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The two principal systems of lattice constants that have arisen in the study of cooperative phenom­
ena and related problems on crystal lattices are the strong (low-temperature) and the weak (high­
temperature) systems. The two systems are defined in terms of the concepts of graph theory, and a 
general theorem relevant to cluster expansions is stated. The interrelation of the two systems is studied 
and exploited to derive configurational data for the face-centered cubic lattice. All star graphs with 
up to seven points (vertices) or nine lines (edges) that are embeddable on the face-centered cubic are 
described. A general classification of stars with cyclomatic index 3 is given. 

1. INTRODUCTION 

T HE last few years have seen a most promising 
development in the calculation of exact series 

expansions needed for the investigation of the Ising 
and Heisenberg models of a ferromagnet and anti­
ferromagnet and more generally for the statistical 
mechanics of interacting systems on crystal lattices. 
Considerable effort has also been devoted to closed 
form approximations and to improved systematic 
techniques of extrapolation. It is now recognized 
that reliable information on the physical properties 
of three-dimensional systems can be obtained from 
such studies, and an extensive literature exists. For 
8. bibliography, reference should be made to the 
reviews by Domb,l Fisher,2 and Helfand. 8 

• This research has been supported (in part) by the U. S. 
Department of the Army through its European Research 
Office. 

1 C. Domb, Advan. Phys. 9, Nos. 34 and 35 (1960). 
1M. E. Fisher, J. Math. Phys. '\ 278 (1963). 
I E. Helfand, Ann. Rev. Phys. uhem. 14, 117 (1963). 

With few exceptions the more successful methods 
of extracting reliable information about the critical 
region depend on the provision of increasing amounts 
of structural data for the lattice studied. It is found 
in practice that, as seems reasonable on physical 
grounds, the most satisfactory sequences of approxi­
mants are obtained by grouping the configurational 
data in a reasonably unbiased way. Essentially, 
most methods depend implicitly, and sometimes 
explicitly, on the enumeration and counting of the 
multiply connected graphs that can occur on the 
lattice studied. The number of graph types is not 
finite, and successive approximants correspond to 
the grouping of the data by the number of lines 
or the number of points in each graph. 

The enumeration of all the possible multiply con­
nected graphs (or stars) of a given number of lines 
or points is a pure mathematical problem of im­
portance in the Mayer theory of gas condensation 
and has been much studied, notably by Uhlenbeck 
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and Ford.4 For most problems connected with inter­
acting systems on a lattice, the problem takes on 
a new character as at an early stage a large number 
of the theoretically possible topologies are usually 
excluded by the structural limitations of the lattice. 
For each new approximation, or series coefficient, 
the number of graphs increases rapidly, but far 
less rapidly than for the most general possible 
lattice, which would admit all graphs, and to which 
the graph theoretical enumeration problem properly 
applies. Progress in obtaining high-order approxima­
tion has been relatively slow, largely because of the 
difficulty of supplying the configurational data; 
this is particularly the case for closely packed 
lattices such as the face-centered cubic. 

As a natural consequence of different studies of 
the Ising model of a ferromagnet two different sys­
tems of configurational data or lattice constants have 
arisen. The low-temperature, or strong, system occurs 
in the derivation of expansions applicable to the 
ordered state below the transition temperature and 
corresponds to a systematic enumeration of dis­
ordered states in the ordered assembly. The high­
temperature, or weak, system occurs in the derivation 
of expansions applicable above the transition tem­
perature and corresponds to the systematic enumera­
tion of ordered states in the disordered assembly. 

The construction of lattice constant tables of use­
ful proportions for the more usual crystal lattices 
is of fundamental importance and such data are 
applicable to a wide range of problems. In particular, 
we quote the elucidation of the critical properties 
of the specific heat, magnetization, and susceptibility 
of the IsingS

-
9 and Heisenberg1o .11 models of a ferro­

magnet and antiferromagnet, the lattice gas prob­
lem,2 the percolation problem, 12.13 cluster size,14 the 
dilute magnet,15-17 and the excluded volume prob­
lem.18- 2o 

( G. E. Uhlenbeck and G. W. Ford, Studies in Statistical 
Mechanics, J. de Boer and G. E. Uhlenbeck, Eds. (North­
Holland Publishing Company, Amsterdam, 1962), Vol. 1, 
p. 123. See also W. G. Hoover and A. G. de Rocco, J. Chern. 
Phys. 36, 3141 (1962). 

6 A. J. Wakefield, Proc. Cambridge Phil. Soc. 47, 419 
(1950); ibid. 47, 799 (1951). 

6 C. Domb and B. J. Hiley, Proc. Roy. Soc. (London) 
A268, 506 (1962). 

7 C. Domb and M. F. Sykes, Proc. Roy. Soc. (London) 
A235, 247 (1956). 

8 M. E. Fisher and M. F. Sykes, Physica 28, 939 (1962). 
• G. A. Baker, Phys. Rev. 124,768 (1961). 
10 C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962). 
11 C. Domb and D. W. Wood, Phys. Letters 8, 20 (1964). 
12 M. F. Sykes and J. W. Essam, Phys. Rev. 133, A310 

(1964). 
13 M. F. Sykes and J. W. Essam, J. Math. Phys. 5, 1117 

(1964). 
14 C. Domb and M. F. Sykes, Phys. Rev. 122, 77 (1961). 
16 B. R. Heap, Proc. Phys. Soc. (London) 82, 252 (1963). 

To provide lattice constant tables a variety of 
specialized techniques have been developed and 
many of these are described by Domb.1 Increasing 
use is being made of electronic computers.21 - 2S 

Recent improvements in cluster techniquesll
•

I
7.26 

presage the study of more ambitious lattice model 
problems all depending on a knowledge of the same 
essential configurational data. 

In the present paper we define the concepts of 
weak and strong lattice constants in the language 
of graph theory and state precisely some general 
properties of the two systems which are of particular 
interest in physical applications. The first of these, 
implicit in the literature, is the existence of the 
so-called cluster expansions (for quantities satisfying 
the extensive relation) in terms of the connected 
constants only. The second, again implicit in the 
literature, is the interrelation of the two systems 
which we exploit to obtain configurational data on 
the fcc lattice. 

We show that the two systems can be related 
by a matrix, some of whose properties we study. 
The actual counting of the individual graphs on the 
more important crystal lattices has been studied 
simultaneously by Martin,27 and extensive tables of 
data will be published elsewhere. The present paper 
is partly intended as an introduction to this publica­
tion. In particular, we discuss briefly the problem 
of classification and show that the interrelation 
of the systems can be used to effect an economy of 
effort. We subsequently apply the general results 
to the theory of percolation.28 

2. GENERAL CONCEPTS 

We employ as far as possible the graph definitions 
of Ore29 with only slight additions dictated by the 

16 D. J. Morgan and G. S. Rushbrooke, Mol. Phys. 6, 477 
(1963). 

17 G. S. Rushbrooke, J. Math. Phys. 5, 1106 (1964). 
18 M. E. Fisher and M. F. Sykes, Phys. Rev. 114,45 (1959). 
19 B. J. Hiley and M. F. Sykes, J. Chern. Phys. 34, 1531 

(1961). 
20 M. F. Sykes, J. Math. Phys. 2, 52 (1961). 
21 G. S. Rushbrooke and J. Eve, J. Chern. Phys. 31, 1333 

(1959). 
22 G. S. Rushbrooke and J. Eve, J. Math. Phys. 3, 185 

(1962). 
23 J. L. Martin, Proc. Cambridge Phil. Soc. 58, 92 (1962). 
24 C. Domb, J. Chern. Phys. 38, 2957 (1963). 
26 C. Domb, 1. Gillis, and G. Wilmers, Proc. Phys. Soc. 

(London) 85, 625 (1965). 
26 See in particular Ref. 1, Sees. 5.2.10 and 5.3.2. 
27 J. L. Martin (private communication). Work in progress 

at the Mathematics Division of the National Physical 
Laboratory, Teddington, England. 

28 J. W. Essam and M. F. Sykes, J. Math. Phys. 7, 1573 
(1966). 

29 O. Ore, Theory of Graphs, American Mathematical 
Society Colloquium Publications (American Mathematical 
Society, Providence, Rhode Island, 1962), Vol. XXXVIII. 
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FIG. 1. An undirected linear graph. ;\ / FIG. 3. Example of two isomorphic graphs. ~ 
~ . 

special emphasis of our studies. For a detailed treat­
ment of the fundamental concepts, reference should 
be made to Ore29 and to Berge30 and for the top­
ological background to Patterson31 and Kelley32 and 
particularly Veblen. 33 

We illustrate in Fig. 1 an undirected linear graph. 
It has six vertices which constitute the vertex set V, 
four edges, and three connected components. The 
graph is the abstract concept represented by the 
vertex set and the associated pairings of the vertices 
represented by the edges. The number of edges 
having a given vertex as end point is the degree 
of that vertex. In our example there are three 
vertices of degree two, two of degree one, and one 
of degree zero. 

For a connected graph C, a vertex is called an 
articulation point or cut-point (or cut-vertex) if the 
graph obtained by deleting it, and all its incident 
edges, is not connected. A connected graph with 
two or more vertices and no cut-points is called a 
star. A connected graph other than a single vertex, 
or a single edge, with no cut-points is called multiply 
connected (see Fig. 2). Multiple connectivity may be 
defined in other ways, and for proofs of the equiva­
lence of various definitions, reference should be made 
to the works cited. 

A set of vertices V' is called an articulation or 
cut-set of vertices of C if the graph obtained by 
deleting V', and all its incident edges, is not con­
nected. 

An edge is called a cut-edge or cut-bond of C if 
the graph obtained by deleting it is not connected. 

FIG. 2. Examples of graphs with cut-points. 
Cut-points are marked X. 

30 C. Berge, Theorie des graphes et ses applications (Dunod, 
Paris, 1958) (English edition: Methuen, LOndon, 1962). The 
latter translates sous-graphe as sub-graph instead of section 
graph and sous-graphe partiel as partial sub-graph instead of 
sub-graph. 

31 E. M. Patterson, Topology (Oliver and Boyd, London, 
1963). 

32 J. L. Kelley, General Topology (D. Van Nostrand Com­
pany, Inc., Princeton, New Jersey, 1955). 

33 O. Veblen, Analysis Situs, American Mathematical 
Society Colloquium Publications (American Mathematical 
Society, Providence, Rhode Island, 1931), Vol. V, Pt. 2. 

The end points of the edge are not deleted, and 
therefore the graph consisting of a single edge with 
its end points has a cut-edge. A cut-set of edges is 
a set of edges whose deletion (without deletion of 
their end points) from C leaves a graph which is 
not connected. 

Two graphs G and G' are said to be isomorphic 
when there is a one-one correspondence between 
their vertex sets V and V' such that corresponding 
vertices are joined by edges in one of them only 
if they are joined in the other (Ore)29 j see Fig. 3. 

For many applications a graph is thought of as 
a network and the vertices as junctions. Vertices 
of degree greater than 2 are called the nodes or 
principal points; those of degree 2 or 1 the antinodes. 

If G is any graph and A some vertex of degree 2, 
then we define the suppression of the vertex A to 
be the deletion of A from the vertex set V of G 
and the identification of the two edges incident 
upon A. The reverse process of replacing an edge 
incident upon two vertices Band C by two edges 
(one incident upon B, one upon C, and both upon 
a new vertex A) is called the insertion of a second­
order vertex on the edge BC. 

If G is any graph and G' a graph derived from 
G by the insertion or suppression of any number 
of vertices of degree 2, then G and G' are said to 
be homeomorphic and each is a homeomorph of the 
other. Figure 4 gives examples. 

Homeomorphs have the same basic topology and 
the concept of homeomorphism is of value in many 
physical applications. For example, the number of 
self-avoiding walks on a lattice may be expressed 

Suppression of vertex of degree 2 

D>~<l> 
The graphs ~ and D'- are homeomorphic. 

<3> .nd <l I I ~ hn_='P" of 

<!J> 
FIG. 4. Examples. Insertion of vertex of degree 2. 
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in terms of all the homeomorphs of the four top­
ological types.20 

0600 
0-0 

It is convenient to assign reference symbols to 
the various types of linear graph and we use gi and 
order the subscripts as follows. 

We denote the number of vertices and edges in 
gi by V(gi), leg;), respectively, and abbreviate in 
general to V;, Ii' We order the subscripts so that 
gi occurs before gi if Vi < Vi; or if Vi = Vi then 
if l; < Ii' Thus the sequence begins 

• • 
g, 

/. A A 
(2.1) 

If V; = Vi and I; Ii of which the first example is 

the pair /'-/ and 'L., we suppose 

that the suffixes have been arbitrarily assigned. 
In a similar manner, we assign symbols ci , B; to 

the various types of connected and star graphs, 
respectively, arranged in the same graph dictionary 
order. In general, we abbreviate v(c;), l(c;), V(B;), I(B;) 
to V;, I; whenever it is clear from the context which 
graph dictionary is being used. Again, when using 
other symbols, G for example, we usually abbreviate 
v(G), l(G) to Va, la, and likewise with other quantities 
whenever the meaning is clear. 

We denote the number of connected components 
in g; by neg;) or n;. The cyclomatic number C(g;) 
of a graph is defined to be 

C(g;) = I; - v; + n;. (2.2) 
Evidently this is invariant under the suppression or 
insertion of vertices of degree 2, and homeomorphic 
graphs have the same cyclomatic number. 

If gr and g. are two graphs with disjoint vertex 
sets and disjoint edge sets, we denote by gr U g. 
the graph whose vertex and edge sets are the unions 
of the respective sets of gr and g •. Thus, for example, 
(Js = gl U ga and g, = gl U gl U gl = gl U g2' 

A graph H is a Bubgraph of G when the vertex 

set V(H) is contained in the vertex set V(G) and 
all the edges of H are edges of G. If A is a subset 
of the vertex set of G, the Bection graph G(A) is 
defined as the subgraph whose vertex set is A and 
whose edges are all those edges of G which connect 
two vertices in A (Ore).29 

A partial graph P of G is a subgraph of G whose 
vertex set is the vertex set of G. 

Two subgraphs are vertex-disjoint if they have no 
vertices, hence no edges, in common. Two subgraphs 
are edge-disjoint if they have no edges in common. 
If HI and H 2 are two subgraphs of G we define 
their sum graph H = HI + H 2 to be the subgraph 
formed from all the vertices and edges of HI and 
H2 or both. 

Any subgraph G' of a graph G which is isomorphic 
with a graph g is said to represent an embedding 
of g in G in the weak sense (weak embedding). Any 
section graph G* of G which is isomorphic with g 
is said to represent an embedding of (I in G in the 
strong sense (strong embedding). Evidently a strong 
embedding is also a weak embedding, but the con­
verse statement is not necessarily true. 

Any weak embedding of g in G defines a subset 
V' of the vertices of G which are also vertices of, g 
embedded in G. We call the section graph which 
has V' as its vertex set the associated section (lraph 
of the embedding. 

Suppose that a graph G is the sum graph of two 
or more of its subgraphs, for example, of the three 
subgraphs Hi) H2, Ha isomorphic with some (I;, gi' gl 
of (2.1). Then 

(2.3) 

Now HI, H 2, Ha are weak embeddings of g;, gi, gl 
in G, and we call (2.3) an overlap partition of G 
into gi, gi, gk' In general, there will be more than 
one possible choice of embeddings of gj, gi, gk in 
G having G as its sum graph, and we define the 
total number of such choices as the number of over­
lap partitions of G into g;, gi, gk and write this 
number 

{g, + gi + gk = Gj. (2.4) 

For example, there are three overlap partitions of 
the triangle g7 into ga and g6 and three into (18 and g8 or 

{ga + g6 = g7j = 3, 

{g6 + g6 = g7j = 3. 
(2.5) 

We call these quantities overlap partitions because 
in general the component graphs do overlap and 
have some, or all, of their edges and vertices in 
common. 



                                                                                                                                    

LATTICE CONSTANT SYSTEMS AND GRAPH THEORY 1561 

The lattice constant of a graph g on a graph G is 
defined for both weak and strong embeddings as 
follows: 

(1) Weak sense (Weak or high temperature lattice 
constant) (g; G) = Number of subgraphs of G 
isomorphic with g. 

(2) Strong sense (Strong or low-temperature lattice 
constant) [g; G] = Number of section graphs of 
G isomorphic with g. 

We follow the convention of Domb in representing 
the weak or high-temperature condition by round 
brackets and the strong or low-temperature condi­
tion by square brackets. (y; G) is the number of 
weak embeddings of y in G, [g; G] the number of 
strong embeddings. For any graph G with v vertices 
and l edges we have two sets of lattice constants: 

(1) The weak set (Yi; G) for all Yi with li ~ l, 
Vi :$ v. 

(2) The strong set [Yi; G] for all Yi with II ~ l, 
Vi :$ V. 

Obviously any constant for Yi with It > 1 and or 
Vi > V must be zero, and by excluding these the set 
of lattice constants as defined is a finite set. For 
example, the lattice constants of the triangle g7 are 

(gl; g7) = 3 

(g2; Y7) = 3 

or 5 

[gl; Y7] = 3, 

[Y2; g7] = 0, 

(ga; g7) = 3 

(y,; g7) = 1 

(Y6; g7) = 3 

(ge; g7) = 3 

(g7; g7) = 1 

[ga; g7] = 3, 

[y,; g7] = 0, 

[g6; g7] = 0, 

[ge; g7] = 0, 

[(hi g7] = 1. 

3. GENERAL THEOREMS 

We now state a result which relates the strong 
and weak set of lattice constants for any graph G. 

Theorem I: If g~rl is a graph with r vertices and 
G any graph 

(g:r); G) = L: (g:rJ ; g)rJ)[g)rJ; G], (3.1) 
i 

where the summation is taken over all graphs gj') 
with r vertices. 

Proof: Any strong embedding of y}rl in G will be 
the associated section graph of (y:rJ; y~rJ) weak 
embeddings of y:rJ in G. By definition the number 
of these strong embeddings is [g~r); G] and since 
every embedding of g:r) has one, and only one, 
associated section graph, the result follows. 

We illustrate the fact that any weak constant 
can be expressed as a linear sum of strong constants 
with the same number of vertices by an example. 

1 X 2 

+ [/\; ~1l.6. ; £J (3.2) 

+ 3Xl 

Since (3.1) is true for any graph it is convenient be written in matrix notation as 
to condense the notation and write 

(gi; G) = PI, [Yi; G] = Pi, (gi; g;) = aii' (3.3) 

and in this notation (3.1) becomes 

Vi = Vi' (3.4) 

If we group together all equations of type (3.4) 
which apply to graphs with r vertices they may 

per) = A(r)P(r) , (3.5) 

where per) and Per) are column vectors the elements 
of which are the weak and strong constants, respec­
tively, of all graphs with r vertices and A(r) is a 
square matrix which we call the rth-order conver­
sion matrix. .As an example we illustrate the third­
order conversion matrix. 
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g4 gs g6 g7 

• • ./ .·AA 
g4 • • • 1 1 1 1 

gs/ 0 1 

• 2 3 (3.6) 

g6A 0 0 1 3 

g7A 0 0 0 1 

The conversion matrix is triangular with the lower 
triangle zero since we have ordered the graphs by 
the number of their edges and 

(3.7) 

Further, all the diagonal elements are unity, and 
therefore A(r) is nonsingular and can be inverted 
recursively to yield a reciprocal conversion matrix 
B(r). The elements of B(r) can be written 

b (I) Z/-Z; 
if = - ail 

a result due to Martin.34 

To prove (3.8) we construct further 
C(r, k); k ~ 1 where 

ci;(r, k) = ai;(r) if 1; = 1i + k 

= 0 otherwise. 

(3.8) 

matrices 

(3.9) 

Denote a graph gl with v vertices and 1 edges by 
gi {v, I}. Now, by removing one edge from a graph 
g j with I + k edges and k - 1 edges from all the 
resulting graphs, we find 

(g.{r, I); gdr, I + kl) 

= ~ f: (Yil r , l); Yh{r, I + k - II) 

X (Yh{r, I + k - I); y;lr, I + k}), (3.10) 

where the sum is over all graphs with 1 + k - 1 
edges. By the definition (3.9) this can be rewritten 

1 
c,;(r, k) = k f: cih(r, k - l)ch;(r, 1). (3.11) 

In matrix notation (3.11) becomes 

C(r, k) = (l/k)C(r, k - I)C(r, 1), (3.12) 

and therefore 

Now 
!r(r-1) 

A(r) = I + L: C(r, k) 
k-l 

,r(r-1) 

= I + L: [C(r, l)]k/k! = exp [C(r, 1)], (3.14) 
k-l 

since 

[C(r, l)t = 0 for k > !r(r - 1) . 

But 

B(r) = [A(r)r1 = exp [-C(r, 1)] 
!r (r-1) 

= I + L: (-I)kC(r, k) (3.15) 
k-l 

from which the result (3.8) follows immediately. 
The recurrence relation (3.12) may be used as a 
practical means of computation of A(r) given C(r, 1). 

It follows by repeating the arguments of this 
section for the set of connected constants and further 
for the set of star constants that we may define 
corresponding nonsingular conversion matrices for 
the weak and strong sets of these quantities. We 
need only the additional observation that the asso­
ciated section graph of any embedding of a con­
nected graph must be a connected graph and that 
of a star must be a star. As an example we illustrate 
the fourth-order star conversion matrix. 

D 
IZI 
~ 

Dl21~ 
1 1 3 

o 1 6 

o o 1 

(3.16) 

We now state a theorem which we use to show 
that the lattice constant on a graph G for any graph 
with more than one component (separated lattice 
constant) can be calculated from the connected 
lattice constants of G. 

C(r, k) = (l/k!)[C(r, 1)]k. (3.13) Theorem II: If g, and g; are two graphs g, ¢ g; 
U J. L. Martin (private communication). and G any graph then 



                                                                                                                                    

LATTICE CONSTANT SYSTEMS AND GRAPH THEORY 1563 

(gj V g;; G) = (g,; G)(g;; G) 

- 1: {g, + g; = gt)}(g~r); G), (3.17) 
k 

where the summation is taken over all g~r) with 
r < v, + Vk. 

Proof: The total number of pairs of embeddings 
of g, and gj is (g,; G)(gj; G) and these divide into 
two disjoint classes: 

(1) Pairs for which the respective embeddings of 
g, and gj are vertex disjoint. The number of these 
is by definition (g, V gj; G). 

(2) Pairs for which the respective embeddings 
have at least one vertex in common. Then if girl = 
g, + gj is the sum graph of any pair of embeddings 
the number of vertices in Uk must be less than 
v, + Vi' The number of pairs which have any given 
gk as sum graph is simply the number of overlap 
partitions of gk into gi and gj. Further every pair 
of embed dings defines some sum graph and therefore 
the number of pairs in this class is 

"{ + (r l }( (rl. G) £.oJ g, gj = gk gk, , (3.18) 
k 

where the summation is taken over all g1rl with 
r < v, + Vj' 

If g, = gj the result must be modified as the 
number of pairs is then !(g i; G) 2 • 

The graphs g, and gj are not necessarily connected 
and by successive applications of Theorem II the 
number of embeddings of a many component graph 
may be expressed in terms of the embeddings of 
single component graphs. We therefore have the 
important result that the weak constant for a graph 
g, with connected components Cr , C., CI , ••• can 
be expressed as a polynomial, of degree equal to 
the number of components of g" in weak connected 
constants and that the resultant expression is in­
dependent of G. 

Thus any (weak) separated lattice constant (g,; G) 
may be expressed in terms of the connected (weak) 
constants (Cj; G) with Vj ~ Va. It follows, by the 
existence and properties of the conversion matrices, 
that the statement is true with (weak) replaced by 
(8trong) in either or both positions. 

An important application of this result is to the 
development of cluster expansions for extensive 
quantities associated with a graph. 

4. THE CONSTRUCTION OF CONVERSION 
MATRICES 

We devote attention in this section to a description 
of methods employed in the construction of the rth-

order conversion matrix A(r) defined in (3.3), (3.4), 
and (3.5), and illustrated for r = 3 in (3.6). 

To begin with we note that provided the g, are 
ordered as described in Sec. 2 then A(r) can be 
conveniently partitioned into block matrices A.I(r) 
[0 ~ 8, t ~ ir(r - 1)] where if the element cor­
responding to (g,; gj) lies within A.I(r) then besides 
Vi = Vj we have l, = 8 and l; = t. The matrix 
A.I(r) is thus of order nCr, 8) X nCr, t), where nCr, 8) 
is the number of distinct graphs having r vertices 
and 8 edges. Also, 

A •• (r) = In(r",; A.tCr) = 0 if t < 8. (4.1) 

It has already been mentioned in the proof of (3.8) 
that the relation (3.12) may be used as a practical 
means of computation of A(r). In terms of the 
A.I(r) this relation becomes 

A.I(r) = A.,B+l(r)A.+ 1 ,,(r)/(l - 8) (4.2) 

for t > 8 + 1. Thus to evaluate the A.I(r) and 
thereby ultimately the complete matrix, A(r), it is 
sufficient to obtain the submatrices A.,.+l(r) 
[0 ~ 8 ~ ir(r - 1)]. 

Let us consider the evaluation of (g,; g;), where 
v, = Vj = rand l; = l, + 1. This is equal to the 
number of ways of removing a single edge from 
the graph g; to give the graph g,. For small values 
of r this evaluation can be carried out straight­
forwardly by inspection once a complete table of 
graphs having r vertices has been drawn up. The 
conversion matrices for r ~ 5 are easily computed 
in this way, and the same general method can be 
used for the evaluation of the sixth-order matrix. 
In this latter case for large values of 8, that is when 
the graphs have a large number of edges, the 
recognition of a graph is made simpler by considering 
its complement. However, when we consider the 
seventh-order conversion matrix, the total number 
of graphs involved, namely 1044, becomes too large 
for such methods and recourse has to be made to 
a computer. 

There are two main problems in connection with 
the use of a computer to enumerate graphs, namely, 
the actual representation of a graph in the computer 
and the identification of a particular graph among 
a dictionary of possibly some hundreds of graphs. 
The most convenient method of representing a graph 
appears to be by means of its adjacency matrix. 
If the vertices of a graph having a total of V vertices 
are labeled 1, 2, ... , v, then the adjacency matrix 
of the graph is the V X V matrix D = (d.,) in which 
dr. = 1 if there is an edge connecting vertex r to 
vertex 8 and d.. = 0 otherwise. Since in this work 
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we are dealing with unlabeled graphs, a particular 
labeling must be assigned to each graph in order 
to be able to represent it in this manner. A con­
venient way of doing this is to assign the label 1 
to the vertex having the highest degree, 2 to the 
one having the next highest, and so on. This labeling 
is not normally unique since if several vertices have 
the same degree, the assignment for these vertices 
is made arbitrarily. 

When we wish to identify a particular graph, we 
compare its adjacency matrix with those of all 
graphs having the same set of degrees. Should the 
graph not be so identified, we interchange two rows 
and columns of the adjacency matrix (i.e., inter­
change the labels of two vertices of the graph). 
This is done according to a scheme which preserves 
the set of degrees as before and which ultimately 
runs through all possible labelings of the graph.35 

The process is then repeated until the graph is 
identified. 

In order to obtain the list of all s-edged graphs 
which are obtained from a particular (s + I)-edged 
graph, it is only necessary to remove each edge 
of the graph in turn, possibly relabel the graph to 
conform with the representation scheme, and then 
apply the identification process. 

By means of these techniques, the matrices 
A •. Ht (7) (0 ~ s ~ 20) were computed in approx­
imately four hours using the Ace computer of the 
National Physical Laboratory. Full details of the 
program and other results concerning seven-point 
graphs are given elsewhere.38 Once these matrices 
had been evaluated, the construction of the com­
plete matrix A (7) followed using (4.2). 

5. CLUSTER EXPANSIONS 

Suppose that4>=4>(G) is some quantity determined 
explicitly by the set of lattice constants of G, weak 
or strong, say lli(G), and certain independent pa­
rameters. For example, we may take 4> to be the 
configurational free energy L of the Ising model of 
a set of spins located on the vertices of G and 
interacting in pairs delineated by the edges of G. 
This is determined by G and the variable parameters 
defining the absolute temperature T and applied 
magnetic field H, together with constant parameters 
such as the exchange interaction J. A general 
formulation i in terms of configurations (subgraphs) 
can be given and the quantity 4> will be 

.. Details of a similar scheme which runs through all pos­
sible permutations of N objects by means of interchanges has 
been given by B. R. Heap, Co~puter J. 6, 293 (1963). . 

as B. R. Heap, National PhYSIcal Lab~ratory, MathematICS 
Division Report No. Ma. 64 (to be published). 

4> = 4>(G) = L[lli(G); T, BJ. (5.1) 

As a second example we take the mean number 
of clusters in a random mixture. Suppose the 
vertices of G are colored black with probability p 
and white with probability 1 - p. Then any realiza­
tion of the probability distribution on G defines 
a linear graph RB which is the section graph of G 
whose vertices are all the black vertices. Now G 
contains fui; GJ section graphs isomorphic with gi, 
and the probability of anyone of these being RB 
is just 

p"(1 - p)"O-", (5.2) 

and if gi has ni connected components the mean 
number is defined to be 

K = (ni) = L: niP"(1 - p)'O-"[gi; G], (5.3) 

and the quantity 4> will be 

4> = 4>(G) = K(ITi(G); p). (5.4) 

[We recall that in (5.2) Va = (gt; G) is also a lattice 
constant of GJ. 

Now by Theorem II if 4>(G) is determined by the 
set of all lattice constants it will equally be de­
termined by the set of all connected constants alone. 
We thus suppose generally that 

4> = 4>(G) = ..y[ll,(G); t], (5.5) 

where lli(G) with i = 1, 2, ... now denotes the 
set of connected lattice constants (Ci; G) or [Ci; G] 
listed in the conventional graph dictionary order 
of Sec. 2 and t denotes a set of parameters. 

We now suppose that 4> (G) has an extensive 
property, namely, 

4>(G V G') = 4>(G) + 4>(G'), (5.6) 

that is, the quantity 4> for two graphs considered 
together is the sum of the quantities for the two 
graphs considered separately. The extensive prop­
erty of the free energy is well known. For the mean 
number function it is obvious. 

It is evident that each connected constant lli(G) 
satisfies the extensive property since 

and 
(c.; G V G') = (c.; G) + (Ci; G') 

[c.; G V G'] = [c.; G] + [c.; G']. 

Consequently, we have 

..y[IT.(G) + IT.(G'); t] 

(5.7) 

= ..y[1l.(G); t] + ..y[II.(G'); t]. (5.8) 

Now, we use this functional relation to show that 
..y(ll.; t) is a linear function of the nonnegative 
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integers TI,. If the TI, were independently allowed, 
all positive integral values this result would be 
trivial since by repeated application of (5.8) we find 
the unique solution 

'I1(IIlI TI2 , ••• ; t) = '11(0,0, 0, ... ; t) 

+ TI l 'l1(I, 0, 0, ... ; t) 

+ II2'11(O, I, 0, ... ; t) 

+ TIa'l1(O, 0, I, ... ; t) + (5.9) 

But the lattice constants must satisfy certain in­
equalities since, for example, a graph with one edge 
must have at least two vertices and more generally 
the presence of any subgraph implies the presence 
of all the subgraphs of that subgraph. 

To prove a result allowing for such restrictions, 
we consider the set of graphs all of whose lattice 
constants TIl are zero for j > k where k is some 
integer. For simplicity we present the proof for 
the case k = 4 when the relevant connected graphs 
are 

• • • 
c! 

(5.10) 

We proceed by defining a new set of variables TI~ 
which may independently take all nonnegative in­
tegral values and are related linearly to the set TI,. 
Consider the highest graph in the list, namely, c,. 
Since it is not contained in any of the lower-order 
graphs, its lattice constant is unrestricted so we take 

II: = TI4 • (5.11) 

Now consider the next highest graph in the list, 
namely, Ca. This lattice constant must be at least 
(Cai C4)TI~ or [cai C4JTI~ in the weak or strong systems, 
respectively, since it is a subgraph of c,. The number 
of independent occurrences of Ca will therefore be 

TI: = TIa - (ca; c,)II: (5.12) 

in the weak system with a similar expression in the 
strong system. To simplify the manipulations and 
to treat both strong and weak systems together 
we write (c;; c;) and [c;; c;l as Ll,.1 it being understood 
that, as with the II;, weak or strong constants are 
chosen throughout. The result (5.12) is now 

(5.13) 

Considering the next highest graph c2 , we see by 
the same argument that there must be at least 
Ll2 •aTIt + Ll2.~~ occurrences. The independent oc-

currences will thus be 

TI: = II2 - .::luTI: - .::l,.,TIt. (5.14) 

Finally we have similarly 

(5.15) 

The generalization for k > 4 is straightforward and 
reflection will show that TI~ is simply the number 
of components of G isomorphic with CI' Since TI~(G) 
is a linear combination of the set TI;(G) it clearly 
also satisfies the extensive property and so we may 
write 

'I1(TI;; t) = 'I1*(II~i t), (5.16) 

where 

'I1*[II~(G) + TI~(G'); t] 
= 'I1*[II~(G); t) + 'I1*(II~(G'); t]. (5.17) 

Since the TI~ are independent this functional relation 
may be solved to yield a solution of the form (5.9), 
where 

'11*(1,0,0,0; t) = '11(1,0,0,0; t) = cp(c l ), 

'11*(0, 1,0,0; t) = 'I1(.::l1.2' 1,0,0; t) = cp(c,), 

'11*(0,0, 1,0; t) = 'I1(.::l1.S, .::l2.a, 1,0; t) = cp(cs), 

'11*(0,0,0,1; t) = 'I1(.::l1." .::l2,4, .::la." 1; t) = cp(c4), 

(5.18) 
and generally 

'11*(0, 0, ... , I .. , .. , ; t) 

= 'I1(.::ll ... , .::l2 ... , ••. .::In-l.n, In, 0, 0, ... ; t) 
(5.19) 

= cp(c,.). 

On substituting and collecting terms, therefore, we 
finally obtain '11 in terms of the TI;, and we have 
proved: 

Theorem III: If cp = 'I1(II,(G); t) satisfies the 
extensive property (5.6) then 

k 

'I1(II;; t) = 1: II;/;(t) , (5.20) 
i-I 

where 

ft(t) = cp(C l ) , 

M t) = CP(C2) - .::ll,,cp(cl), 

fa(t) = cp(ca) - .::l,.aCP(c2) + {.::ll.2.::l2,3 - .::ll.alcp(cl), 

Mt) = cp(c,) - .::la.,cp(ca) + {.::l2.a.::la.4 - .::l2.,lcp(~) 

+ {-.::ll.2.::l2,3.::la.4 + .::l1,2.::l2.4 

+ .::l1.a.::la.4 - .::luI cp(Cl) , (5.21) 
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and generally in fn(t) the coefficient of cp(cm) is 
evidently the sum over all products of the form 

(5.22) 

where 

o < i < j ... < l < n - m. 

In practice it is more often convenient to determine 
the fi(t) directly from the recursion 

i 

fi+l(t) = CP(Ci+l) - L: Ai.i+lf;(t). (5.23) 
i-I 

The weight functions fi are thus obtained by sub­
stitution of the values of cP on each graph in turn. 
The result (5.20) is of great practical use in deriving 
series expansions. 

As examples we quote the method of Domb1 for 
the free energy of the Ising and Heisenberg model 
and of Domb and Woodll for the Heisenberg model. 
In both these problems the technique is immediately 
applicable to the dilute magnet by a simple modi­
fication of the constants which must be weighted 
by the appropriate probability functions. This is 
essentially the method of Rushbrooke17 and of Abe.37 

The general method appears to have been developed 
by many authors and can be derived in other ways 
as, for example, by the methods of Kubo38 and of 
Strieb et al.39 

The result (5.20) is valid in both the weak and 
the strong systems, and we denote the weight func­
tions of a connected graph by Wi and Wi, respec­
tively, and write 

(5.24) 

The appropriate weak or strong weight functions 
can be obtained by direct substitution in (5.21) or 
recursively from (5.23). The two systems of weak 
and strong weights are related by the conversion 
matrix. Denote the column vectors corresponding 
to Wi, Wi of all graphs of r vertices by w(r), W(r). 
Then 

w(r) = B(r)W(r), (5.25) 

where B(r) denotes the transpose of B(r).40 We 
exploit (5.24) to derive expansions for the mean 
number function. 28 

87 R. Abe, Progr. Theor. Phys. (Kyoto) 31, 412 (1964). 
38 R. Kubo, J. Phys. Soc. Japan 17, 1190 (1962). 
39 B. Strieb, H. B. Callen, and G. HorwItz, Phys. Rev. 130, 

1798 (196:3). . 
40 W. L. Ferrar, Algebra (Oxford UniverSIty Press, New 

York, 1941), Sec. 7.5 and Example 11. 

6. LATTICE CONSTANTS FOR AN INFINITE GRAPH 

On an infinite graph the definition of a lattice 
constant requires modification. The infinite graphs 
that arise in physical applications are usually infinite 
crystal lattices. It is customary to denote by N the 
number of sites and to suppose that as N ~ ex> 

the edge effects become negligible. No difficulty 
arises with the more usual crystal lattices, which 
have a regular structure, and by a suitable choice 
of periodic boundary condition may be looped on 
a torus. For an infinite graph we only define con­
nected lattice constants. The number of embeddings 
of a connected graph will be proportional to Nand 
it is usual to redefine the corresponding lattice con­
stant per site. 

On an individual lattice the construction of a 
lattice constant table presents at the outset certain 
difficulties of notation. As remarked in the Introduc­
tion, although the number of types increases rapidly, 
this increase is far less rapid than that of the number 
of theoretically possible types, many of which are 
not embeddable in the lattice considered. For ex­
ample, on the honeycomb lattice there is only one 
star with 13 vertices that is embeddable in the 
strong sense-the graph 

The determination of the appropriate suffix or 
reference number for this if all the stars with up 
to 13 vertices were arranged in graph dictionary 
order is a procedure that rapidly becomes very 
difficult and is not practically feasible. In previous 
sections we have used the conveniently short nota­
tion Pi, P; for theoretical purposes. 

Quite extensive lattice constant data are to be 
found in the review by Domb,l who employs a 
system of symbols of type Pnx, P nz for weak and 
strong constants where n denotes the number of 
edges and x serves to distinguish different topologies 
with the same number of edges and is arbitrarily 
asssigned. For example, 

The system is quite convenient for some applica­
tions such as the expression of the first few coeffi­
cients of a partiCUlar series expansion in a form 
applicable to any graph but is not practical for more 
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extensive tables. We give in the next section a 
summary of the weak embeddings of every star of 
up to nine lines on the face-centered cubic in a 
scheme which can be applied without modification 
to other lattices as for example the diamond lattice. 

7. THE ENUMERATION PROBLEM ON THE 
FACE-CENTERED CUBIC 

The configurational problem presented by a close­
packed lattice such as the face-centered cubic is 
complex. The most important constants are the star 
lattice constants, and in Table I we give an analysis 
of those with up to seven vertices. The order of 
magnitude of the counting problem, or actual de­
termination of the value of the constants, as opposed 
to the enumeration problem, or listing of the possible 
graph types, can be gauged by the size of the total 
count by which we mean the sum of all the lattice 
constants in any class considered (in our example 
all stars with a given number of vertices). The 
number of theoretical possible stars increases rapidly 
with the number of vertices. The number of these 
stars that can be embedded in the face-centered 
cubic increases less rapidly, and this is especially 
the case for strong embeddings and for these latter 
the total count is also smaller. If we employ the 
method of space types the maximum asymmetry 
on the face-centered cubic of any type is 48N and 
since the total count of the 47 seven vertex stars 
in the strong system is only 3972N these correspond 
to only a small number of types each. We have 
therefore counted the strong star constants in this 
way and we give in the Appendix the 71 star graphs 
with from three to seven vertices that have nonzero 
strong embeddings for the face-centered cubic. 

We have derived the corresponding set of 306 
nonzero weak star lattice constants by employing 
the star conversion matrices. For most applications 
of weak constants, an edge grouping rather than a 
vertex grouping is appropriate. (For example, for 
the specific heat of the Ising model or the mean 
number of clusters in bond percolation processes.) 
The data from the star conversion matrices is then 

usefully supplemented by further graphs with low 
cyclomatic number. For most applications also draw­
ings provide a cumbersome and somewhat unsatis­
factory description, and we have therefore classified 
the weak constants as follows. 

We first consider the graphs that are homeomorphs 
of a Jordan curve. In lattice statistics these are 
usually called polygons and denoted by Pn, where 
n denotes the number of edges. To avoid confusion 
with our previous notation and to remain consistent 
with our subsequent notation for more complex 
graphs, we use the symbol (n)" to represent both 
the graph and its weak lattice constant. (The strong 
constant will be denoted by [nj".) We follow this 
convention throughout the remainder of this paper. 

On the face-centered cubic following the con­
vention of Sec. 6 that for an infinite lattice these 
quantities are defined per site, 

(3)" = 8, 

(4)" = 33, 

(5)" = 168, 

(6)" = 970, 

(7)" = 6168, 

(8)" = 42 069, 

(9)" = 301 376. 

Mter the Jordan curves, which have cyclomatic 
number 1, we list graphs with cyclomatic number 2. 

The first example ;s the "",ph <l>- and all 

the others are homeomorphs of this. We call such 
graphs 8 graphs. A 8 graph is defined if the number 
of edges in each of the three "bridges" connecting 
the nodes is given. Denoting these by r, 8, t we 
describe these graphs by the notation represented 
by the scheme 

TABLE I. Data for face-centered cubic lattice. 

Number of star constants Total count 
Vertices Nonzero Nonzero 

Theoretical Weak Strong Weak Strong 

3 1 1 1 8N 8N 
4 3 3 3 71N 29N 
5 10 8 4 882N 126N 
6 56 41 16 13832N 685N 
7 468 253 47 242476N 3972N 
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(r, s, t), 

example OJ = (1, 3, 3),. 

We list in Table II the () graphs on the face-centered 
cubic with up to nine edges together with the cor­
responding weak lattice constants. The ordering of 
the parameters r :$ s :$ t is purely for convenience of 
reference. (I, 3, 3), and (3, 1, 3), are the same graph. 

Graphs with cyclomatic index 3 are all home­
omorphs of four distinct topologies'1 which we name 
as follows: 

a graph {3 graph 'Y graph 0 graph 

The a graph (or tetrahedral graph) is described by 
the following scheme. The edge lengths of bridges 
between distinct pairs of nodes are recorded as 
number pairs in dictionary order. The final pair is 
then reversed, if necessary, to ensure that the first 
entries for each pair are all incident on one vertex. 

Thus in general we write (a, b; c, d; e, f) with 
a :$ b, c :5 d, a ~ c, c ~ min (e, f) and the bridges 
corresponding to a, c, e are all incident on one node. 
For example, we illustrate two distinct a graphs, 

(1,2; 1, 2; 1, 2) .. (1,2; I, 2; 2, 1) .. 

TABLE II. Face-centered cubic. 8 graphs. 

1=5 
1=6 

1 ... 7 

1-8 

(1,2,2), = 36 
(1,2,3), = 384 
(2,2,2), = 36 
(1,2,4)8 = 2400 
(1,3,3), = 966 
(2,2,3), = 600 
(1,2,5), = 16464 
(1,3,4), = 11616 
(2,2,4), = 3888 
(2,3,3), = 3132 

l=9 (1,2,6), = 
(1,3,5), = 
(1,4,4)8 = 
(2,2,5), = 
(2,3,4)8 = 
(3,3,3)8 = 

122592 
78420 
34380 
28560 
40848 

5252 

'1 See, for example, G. W. Ford and G. E. Uhlenbeck, 
Proc. Natl. Acad. Sci. U. S. 43, 163.(1957). 

TABLE III. Face-centered cubic. a graphs. 

l = 6 (1,1;1,1;1,1) .. = 2 
l = 7 (1,1 ;1,1 ;1,2) .. = 48 
l = 8 (1,1 ;1,1 ;1,3) .. = 312 
1=8 (1,1;1,1;2,2) .. = 78 
l = 8 (1,1 ;1,2 ;1,2) .. = 456 
l = 9 (1,1 ;1,1 ;1,4) .. = 2088 
l = 9 (1,1;1,1;2,3) .. = 840 
I = 9 (1,1;1,2;1,3) .. = 5328 
I = 9 (1,1;1,2;2,2) .. = 1392 
I = 9 (1,2;1,2;1,2) .. = 696 
l = 9 (1,2;1,2;2,1) .. = 632 

TABLE IV. Face-centered cubic. fJ graphs. 

I = 8 (1,2;1,2;1,1),8 = 564 
l = 9 (1,2;1,2;1,2),8 = 6696 
l = 9 (1,2;1,3;1,1),8 = 5472 
l = 9 (1,2;2,2;1,1),8 = 1656 

As before the ordering of the parameters is one of 
convenience and provides a unique description. The 
essential part of the convention is that the first 
entries of each pair are all incident on one node. 
Thus, for example, the last example (1, 2; 1, 2; 2, 1) .. 
is the same as (1, 2; 2, 1; 1, 2) ... 

A description of the remaining three topologies 
presents no ambiguities and we write 

(a, b; c, d; e, f),8 with a ~ b, c ~ d, e :5 f, a :$ c 

and the pair e, f last as drawn. A specific example is 

(2,2; 2,3; I, 2), ~ ~. 
For'Y graphs we write (a, bj c, dj e)7 with e last as 
drawn, and a specific example is 

(1, 2; 2, 2; 3)7 

For 0 graphs we write as an obvious exten8ion of 

TABLE V. Face-centered cubic. 'Y grl\phs. 

1=7 
1=8 
1=8 
1=8 
1=9 
l = 9 
1=9 
1=9 
1=9 
1=9 
1=9 
1=9 

(1,2;1,2;1)7 = 192 
(1,2;1,2;2)7 = 1056 
(1,2~1,3 ~1)7:: 2016 
(1,2,2,2,1)7 - 528 
(1,2;1,2;3)7 = 6384 
(1,2;1,3;2)7 = 10128 
(1,2;1,4;1)7 = 12144 
(1,2;2,2;2)7 = 3024 
(1,2;2,3;1)7 = 5472 
(1,3;1,3;1).y = 5040 
(1,3;2,2;1)'Y = 2568 
(2,2;2,2;1)7 = 312 
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TABLE VI. Face-centered cubic. Ii graphs. 

l = 7 (1,2,2,2)~ = 24 
l = 8 (1,2,2,3)8 = 384 
l = 8 (2,2,2,2)8 = 9 
l = 9 (1,2,2,4)8 = 2352 
l = 9 (1,2,3,3)8 = 1848 
l = 9 (2,2,2,3)8 = 192 

that for 8 graphs 

(a, b, c, cl)~ a ::::; b ::::; c ::::; d. 

We give in Tables III-VI the graphs of cyclomatic 
index 3 on the face-centered cubic with up to nine 

edges. For l ::::; 8 they are given by Domb, for l = 9 
we have used the seven vertex conversion matrix 
and the data of the Appendix. 

For cyclomatic number 4 there are 17 topological 
classes, and since there are only 15 such graphs that 
are embeddable in the face-centered cubic for up 
to nine edges, we simply list in Table VII the in­
dividual graphs. The list exhausts all the weak stars, 
71 in all, for l ~ 9, and to this order there are no 
stars with cyclomatic number 5 or more embeddable 
in the face-centered cubic. 

That the enumeration of the 47 strong star em-

TABLE VII. Stars of cyclomatic number 4, with up to nine edges, that are embeddable in the 
face-centered cubic lattice in the weak sense. 

l = 8 =24 =6 

1-9 
=6 

=336 =160 

=528 =504 -144 

... 96 =432 -288 

=24 ... 216 -120 

=32 
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beddings with seven vertices is complete is con­
firmed by their yielding after conversion to the weak 
system the correct values of (7)" and the four 8 
graphs with 1 = 8 (Table II) which are given by 
Domb (PSG, PSb, PSc, Pad in his notation). This 
provides a check on the completeness of the strong, 
and therefore the weak, enumeration. 

The 468 X 468 star conversion matrix of seventh 
order has been evaluated as described in Sec. 4. 
In this way we obtain a comple.te list of weak stars 
with up to seven vertices. To extend the vertex 
grouping it is necessary to enumerate all stars with 
eight vertices. This is feasible in the strong system, 
as is the setting up of the eight-order conversion 
matrix, and we are undertaking this work. To extend 
the edge grouping it is more efficient to obtain con­
stants of low cyclomatic number directly in the 
weak system. We have already done this for 1 = 9 
by adding the polygon and 8 graphs. For 1 = 10 
we need only the polygon, () graphs, and a, {3, ,"(, 8 
graphs. These are conveniently counted by an exten­
sion of the techniques of Martin. 23 

To proceed further and describe stars with more 
than nine edges embeddable in the face-centered 
cubic it is desirable to develop a notation for those 
of cyclomatic number 4 of which there are 17 topo­
logical classes. We are undertaking this.42 

The notation of this section is immediately ap­
plicable to other lattices. For example, on the dia­
mond lattice there is only one star with cyclomatic 
number above 3 for 1 :::; 16 the graph 

12, 

and we list in Table VIII the remaining 45 stars 
up to this order. 

For practical purposes, actual drawings of these 
graphs are unwieldy and seldom, if ever, required. 
We think our classification is convenient for the 
presentation of data to a computer, and if extensive 

TABLE VIII. Weak star lattice constants for the diamond lattice. 

Jordan curves 
(6)" = 2 
(8)" = 3 

(10)" = 24 
(12)" = 94 
(14)" = 582 
(16)" = 3126 

8-graphs 
1=10 
1=11 
I = 12 
1=13 

1=14 

I = 15 

a-graphs 
1=12 
1=13 
1= 14 

1=15 

1=16 

,s-graphs 
1=14 
I = 15 
1=16 

(2,4,4)8 = 6 
(1,5,5)9 = 18 
(2,4,6)9 = 12 
(1,5,7)9 = 72 
(3,3,7)9 = 24 
(3,5,5)8 = 12 
(2,4,8)8 = 204 
(2,6,6)8 = 6 
(4,4,6)8 = 24 
(1,5,9)8 = 576 
(1,7,7)9 = 60 
(3,3,9)9 = 72 
(3,5,7)9 = 72 
(5,5,5)8 = 8 

(2,2;2,2;2,2)a = 1 
none 
(1,1;1,3;4,4)" = 12 
(1,3;1,3;2,4)" = 12 
(1,4;1,4;1,4)" = 16 
(1,2;2,3;2,5)" = 24 
(1,1;1,3;4,6)" = 24 
(1,3;1,3;2,6)" = 12 
(1,3;1,5;2,4)" = 24 
(1,5;2,2;3,3)" = 12 
(2,2;2,2;2,6)" = 24 

(2,4;2,4;1,1)/1 = 6 
(1,5;2,4;1,2)/1 = 72 
(1,5;1,5;1,3)/1 = 108 
(1,5;1,5;2,2)/1 = 54 
(2,4;2,4;2,2)/1 = 6 
(2,4;2,6;1,1)/1 = 12 
(3,3;3,3;2,2)/1 = 6 

.2 The classes are illustrated in Ref. 28, Appendix. 

l ... 16 

'Y-graphs 
I = 15 

1= 16 

a-graphs 
1= 16 

(2,4,10)8 = 876 
(2,6,8)8 = 276 
(4,4,8)8 = 72 
(4,6,6)8 = 138 

(l,5;2,4;3)'Y = 48 
(1,5;4,4;1)'Y = 24 
(1,5;1,5;4)'Y = 48 
(2,4;2,4;4)'Y = 12 

(1,5,5,5)6 = 4 
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data tables are to be exploited computers are likely 

~ lJ to be employed. Many properties that arise in ap- 3,1 8 
plications are also soluble in quite general form once 

~ 
6,3 24 

the topology of the graph is known. For example, 
4,1 2 the star subgraphs of a {j graph are 

0 (a, b, e + f + c), (a, b, e + f + r1), 

t21 
6,4 24 

(c, d, e + f + a), (c, d, e + f + b), 4,2 24 

~ (a + b)" (c + d)" (a + e + f + c)" 

0 
6,5 72 

(a + e + f + d)" (b + e + f + c)" 4,3 3 

(b + e + f + d)". m 48 

~ 
6,6 
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APPENDIX 

0 The 71 stars with from 3 to 7 vertices that have 6,11 0> 12 
nonzero strong embeddings in the face-centered 6,1 1 

cubic lattice are shown in the following. rn ~6 
6,12 96 

6,2 

(Star diagrams continued on next page) 
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A 7,9 ~24 

6,13 L-J>48 ~ 48 

7,10 

6,
140 24 7,11 f!!t;l 9<l 

6,15 [TI6 . A 24 

O 7,12~ 
6,16 28 <ft> 12 

~8 7,13 A 
7,1 1i""" ~ 9<l 

7,2 W 12 :::: ~ 32 

~ 24 ---J-. 16 7,3 ~ 7,16 'IAI 

7,4 :a 24 7,17 <:fij{ 144 

~ 48 ~ 144 7,5 ~ 7,18 ~ 

7,6 (J:. 24 7,
19
<W 96 

7,7 cSl>" 48 7,20 W> 96 

.If;/\, 96 7,8 [j/ 

7,21 ~ ~ 48 96 7,34 LJ):-

7,22 ~ t---«::1 48 7,35 ~ 

24 ~ 
144 7,36 

7,23 ® 16 7,37 ~ 192 fu24 V 
7,24 ~ 7,38 <tJS1 192 

7,25 IT 24 r:Bl 96 

A- 336 7,39 ~ 144 
7,26 &Y 7,40 l.-.l?"' 

I'N\ 192 r--1<1 72 
7,27 7,41 ~ 
7,28 ~ 384 ® 12 

~ 7,42 96 
7,29 A..... 48 

./\l-.. 24 7,43 LLl 
7,30 V5l' 7,44 I I 1> 24 

7,31 --17 48 rJ\. 24 

W 7,45 'Jl 

~. n 
7,47 
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Percolation Processes. I. Low-Density Expansion for the Mean Number 
of Clusters in a Random Mixture* 
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(Received 13 July 1965) 

A cluster expansion, valid at low densities, is derived for the mean number of clusters in a random 
mixture of sites or bonds on a graph. It is shown that only clusters without a cut-point (stars) are 
required, and a number of general theorems for determining the weights are proved. 

1. INTRODUCTION 

I N this paper we examine the derivation of series 
expansions, valid at low densities, for the mean 

number of clusters in a random mixture. We have 
introduced this problem in a previous paper,l here­
after referred to as 1. For a detailed introduction 
to the problem, and to the closely related percolation 
problem, reference should be made to I, to Fisher 

. and Essam,2 and for a general survey, to Hammersley 
and Frisch.3 We make use of the general concepts 
of graph theory which we have described in a paper, 4 

hereafter referred to as II. 
We begin with a statement of the problem in the 

formal terminology of graph theory and then derive 
a cluster expansion for the mean number function. 
We show that the expansion depends only on con­
nected clusters without cut-points (stars) and that 
the corresponding weights are particularly simple 
in the system of weak lattice constants. We prove 
a number of general theorems of use in determining 
the weights of individual clusters and, as an example, 
derive series expansions for the site and bond prob­
lem on the plane triangular lattice. 

We subsequently apply these expansions to a 
study of the mean number function and extend the 
series developments for the mean size of clusters 
in a random mixture. 

2. STATEMENT OF THE PROBLEM 

(A) Site Problem 

In site mixtures the sites, or vertices, of a linear 
* This research has been supported (in part) by the U. S. 

Department of the Army through its European Research 
Office. 

1 M. F. Sykes and J. W. Essam. J. Math. Phys. 5, 1117 
(1964). 

J M. E. Fisher and J. W. Essam, J. Math. Phys. 2, 609 
(1961). 

I H. L. Frisch and J. M. Hammersley, J. Soc. Indust. Appl. 
Math. 11, 894 (1963). 

• M. F. Sykes, J. W. Essam, B. R. Heap, and B. J. Hiley, 
J. Math. Phys. 7, 1557 (1966). 

graph G are supposed colored black with prob­
ability p or white with complementary probability q. 
We adopt the convention that, in such a random 
mixture of two species represented by the black 
and white sites, the primary species is the black, 
and we refer to small p as low density. The bonds, 
or edges, of G are regarded as colored black if 
they connect two black sites, white if they connect 
two white sites, uncolored if they connect sites of 
different colors. 

Any realization R of the probability distribution 
on G defines two linear graphs RB and Rw which 
are, respectively, the ensembles of black and white 
clusters. More precisely, RB is the section6 graph 
of G defined by all the sites of G that are black in R 
and the term black cluster is used to describe any 
connected component of R B • In general, RB has 
many connected components, and it is the expecta­
tion value of the number of these that we study. 
Denoting the number of connected components of 
RB by n(RB), we define the mean number function K 
by 

K(P; G) = (n(RB». 
(B) Bond Problem 

(2.1) 

In bond mixtures the bonds, or edges, of a linear 
graph G are supposed colored black with probability 
j5 or white with complementary probability ij. A 
realization R of the bond probability distribution 
on G defines two linear graphs RB and Rw which 
are, respectively, the ensemble of black and white 
bond clusters. More precisely, RB is the subgraph 
of G defined by the edges of G that are black in R , 
together with their end points, and a black bond 
cluster is a connected component of RB • We define 
the corresponding mean number function by 

(2.2) 

Ii Defined in II. Sec. 2. 

1573 
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In this simple conceptual form the sites of the graph 
are not assigned a color. The bond problem may 
be studied as a site problem in which each bond 
is made to correspond to a site on a suitably defined 
covering graph.2 

In many applications of bond mixtures the bonds 
are primarily considered as connections between the 
sites, and a simplification results if we adopt the 
following convention which we call the null-cluster 
convention. 

Suppose that for any realization R two sites are 
defined as connected if they are joined by a black 
bond. We employ the term black-connected cluster 
to describe any connected component of the partialS 
graph, PB of G whose edge set is the edge set of RB • 

Some black-connected clusters may reduce to iso­
lated sites (null-clusters). We define the mean num­
ber function Ko for this convention to be the ex­
pectation value for the number of black-connected 
site clusters. We write 

(2.3) 

where the suffix on Ko denotes the operation of the 
null-cluster convention. If we denote the mean 
number, or expectation value, of the isolated sites 
or null-clusters by (n.c.), then 

KoCfJ; G) = K(p; G) + (n.c.). (2.4) 

3. LOW-DENSITY CLUSTER EXPANSION FOR 
K(pj G) (SITE PROBLEM) 

We now describe a method of obtaining the mean 
number function which avoids a detailed specifica­
tion of cluster perimeters6 required by the alternative 
perimeter method. lt has been outlined in II and 
is readily formalized. 

To recapitulate, any realization, R, of the prob­
ability distribution defines a section graph RB of G 
which is the graph of the black sites and bonds. 
In the notation of II, G contains [gi; G] section 
graphs isomorphic with gi and the probability of 
anyone of these being RB is just 

(3.1) 

Thus if g, has n, connected components 

K(P G) '" "(I )'0-"[. G] ; = £.oJ niP - P gi" (3.2) 
i 

where the summation is taken over all the strong 
lattice constants of G. Now these latter can be 
expressed in terms of the connected constants only, 
and because mean number is an extensive property 
it follows, by the arguments of Sec. 5 of II, that 

8 Defined in I, Sec. 2, and in Ref. 2, Sec. 2. 

the resultant expression is linear in the connected 
constants and that a cluster expansion may be 
developed for K(p; G). Thus we may write, denoting 
connected graphs by Ci, 

K(P; G) = ~ W,(P)[Ci; G], (3.3) 
i 

where W, is the appropriate weight function of Ci. 

lt is evident from the form of (3.2) that the weight 
functions are polynomials in p. They can be eval­
uated by carrying out the substitutions for the 
separated lattice constants, and the coefficient of 
any connected constant [Ci; G] will come from two 
sources (II, Theorem II) : 

(1) from c, itself. The presence of the factor p" 
in (3.1) ensures that this contribution is always of 
degree at least Vi in p. 
(2) from separated constants such as, for example, 
a three component graph Cr V C. V Ct. In the 
reduction of these it is evident that Ci cannot occur 
as an overlap partition unless Cr V C. V c, has 
at least Vi vertices, and therefore again by (3.1) the 
contribution is of degree at least Vi in p. 

Alternatively, the weight functions may be eval­
uated from the mean number functions of the 
individual connected constants. Since the weight 
of any graph Ci is expressible in terms of the K(p; G) 
of Ci and all its connected subgraphs [Eqs. (5.19) 
and (5.20) of II], and this expression is linear, and 
further, each function is a polynomial in p of degree 
at most Vi, it follows that W;(p) is of degree at most 
Vi in p. Thus by virtue of the previous result, Wi(p) 
can only have one nonzero coefficient-that of the 
vith power of p, and we state the result as a theorem. 

Theorem I: The strong weight function W,(p) of 
[c,; G] can be written KiP", where K, is independent 
of p. 

The strong weight functions arise quite naturally 
in the site problem since the clusters studied are 
all section graphs. However, we often find it con­
venient to work with the corresponding weak weight 
functions which we introduce by the following 
theorem. 

Theorem II: The weak weight function w,(p) of 
(c.; G) can be written kiP", where k, is independent 
of p. 

Proof: The result follows at once by conversion 
of the strong weight functions K,p" into the weak 
weight functions by means of the conversion matrix 
for weights, which is just the transpose of the 
reciprocal conversion matrix for the connected con-
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stants, and which relates constants with the same 
number of vertices. 

We now define K(c;) = K; and k(c;) = k; to be 
the (strong) K-wt and (weak) k-wt of c., respec­
tively. Following the convention of II, Sec. 2, we 
also abbreviate K(s;), k(s;) to K., k; whenever it 
is clear from the context which graph dictionary 
is being used, and further, we sometimes write KG, kG 
for K(G), keG). For any graph G we have 

K(P;G) L [ci;G]KiP" (3.4) 

L (c i ; G)kiP" , (3.5) 
; 

where the summations are taken over all the con­
nected constants of G. The form of (3.4) and (3.5) 
which results from Theorems I and II makes it 
possible, when G is an infinite graph, to derive series 
developments in powers of P as appropriate to low 
densities. By the methods of this section, the weights 
of the site and the bond are found to be +1 and -1, 
respectively (in both systems), and we use this result 
as a lemma to prove the next theorem. 

Theorem III: For any graph G 

L [Ci; G]K, = L (C;; G)k, = C(G), (3.6) 
.>2 i>2 

where C(G) denotes the cyclomatic number (or 
circuit rank) of G and the summation is taken over 
all the connected constants of G except the site and 
the bond. (In graph dictionary order these will have 
suffixes 1 and 2.) 

Proof: In both the weak and the strong systems, 
the site has weight + 1 and the bond, weight -1. 
Thus from (3.4) 

K(P; G) = VGP - lGP2 + L [c;; G]KiP·'. (3.7) 
i>2 

But for P = 1 the expected number of clusters 
must reduce to the number of components in G or 
K(I; G) = nG, and on setting P = 1 in (3.7), 

L [Ci; G]K; = nG - VG + IG = C(G) (3.8) 
i>2 

by definition. Likewise the result holds for weak 
weights. 

Theorem III may be used to derive the weak 
and strong weights by successive application to the 
connected constants arranged in a suitable graph 
dictionary order (i.e., in order of ascending cyclo­
matic number). We may thus take (3.6) as defining 
the quantities K;, k; associated with a graph Ci. 

The weights of all graphs with three and four 
vertices are found to contain only four with nonzero 
contributions, 

L. D I2I ~, (3.9) 

K-O 
k--1 

which suggests that only stars have nonzero weight­
a result we now prove. 

Theorem IV: If C; has a cut point, K. = k. = o. 
Proof: We prove the result in the strong system, 

and the result for the weak system follows by chang­
ing to weak weights throughout. 

Suppose a graph G has a cut point at the vertex A. 
Then by definition the deletion of A, together with 
all its incident edges, leave a graph with at least 
two connected components. Denote the vertex set 
of anyone of these by V' and that of all the others 
by V". Denote by G' the section graph of G with 
the vertex set V' + A and by Gil that with vertex 
set V" + A. Then G = G' + Gil. By application 
of (3.6) to G, G' and Gil, 

L [Ci; G]K, = C(G), 
i>2 

L [c;; G']K; = C(G') , 
i>2 

L [co; G"]K; = C(G") , 
i>2 

and since A is an articulation point 

C(G) = C(G') + C(G"). 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

The constants of G result from embeddings of each 
Ci in G, and these may be grouped into three mutually 
disjoint classes: those that lie wholly in G', those 
that lie wholly in Gil, and those that lie neither 
wholly in G nor wholly in G' and which necessarily 
correspond to those C; with cut points. Denoting 
the contribution of this third class of embeddings 
by an asterisk, we must have [from (3.10)-(3.13)] 

L [co; G]*K; = 0, (3.14) 
i>2 

and since the only connected graph of three points 
with a cut point has weight zero, the result follows 
inductively by successive application of (3.14) to 
all graphs with cut points. 

Theorem IV enables the definitive equation (3.6) 
for weights to be restricted to multiply connected 
graphs, and we may write, for any such graph M, 

L [8;; M]K; = L (8;; M)k; = C(M) , 
i>1 i>1 

(3.15) 

where the summation is taken over all stars except 
the bond (Sl). For theoretical purposes it is most 
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convenient to study the weak weights; we do so 
in Sec. 5 after we have developed the cluster ex­
pansion for the bond problem to which, as we 
show, the weak weights also apply. For practical 
purposes the strong weights are useful in the actual 
derivation of series expansions, and we prove two 
theorems, restricted to strong weights, that simplify 
the derivation of individual weights. 

Theorem V: The strong K-wt of a graph G is 
the coefficient of the vath power of P in K(Pi G). 

Proof: The result is evident since there is only 
one nonzero constant with Va vertices in the strong 
system-the graph itself. 

Ai3 examples of the application of this theorem 
we quote 

G ~ D K(P;G) ~ 4p - 4p' +p', +1, (3.16) 

G ~ ~ K(P; G) ~ .op - Sp' + 4p' + p' - p', Ka = -1. (3.17) 

We remark, parenthetically, that the corresponding 
k-wts can be found by use of the conversion matrix. 
The method is capable of elaboration and an ap­
propriate technology can be developed to obtain 
K(Pi G) for an individual graph by the use of re­
currence relations. It is found that many stars have 
zero K-wt, and most of these are accounted for by 
the next theorem. 

Theorem VI: If G is a graph with a cut set of 
n vertices, and further the section graph which has 
these n vertices as vertex set is a complete graph 
of n vertices, then Ka = O. 

Proof: Denote the vertex set of the cut set by 
N. Denote the vertex set of one of the connected 
components that result from the deletion of Nand 
its incident edges by V', and that of all the others 
by V". Denote by G' the section graph with vertex 
set N + V', and by Gil that with vertex set V" + N. 
If in a realization R of the distribution any of the 
vertices in N are black, they must all be members 
of the same component of RB since the section graph 
of G defined by N is a complete graph. But G = 
G' + Gil and the number of components in the 
sum graph G is the sum of the components in G' 
and Gil if the cut set contains no components 
(probability q"). If the cut set contains a component 
it contributes both to G' and Gil. Thus 

K(Pi G' + Gil) = K(Pi G') 

+ K(P; Gil) + q" - 1. (3.18) 

By Theorem V the required weight is the coefficient 
of the (va' + Va" - n)th power of p, and this 

exceeds max (va-, va") since Va' > n, VO" > n. 
Therefore Ka = O. 

4. LOW-DENSITY CLUSTER EXPANSION FOR 
i?(fi; G) (BOND PROBLEM) 

The cluster expansion method applies to bond 
mixtures in an analogous manner to the treatment 
of site mixtures. If g, is any subgraph of G, with 
no isolated vertices, the probability of gi being a 
realization of the bond distribution probability is 
now 

(4.1) 

and the argument proceeds formally as for the site 
problem. Thus we now write 

K(fi; G) = L: (Ci; G)wi(fi) (4.2) 
i 

and obtain in place of Theorem I: 

Theorem VII: The bond weight function w.(fi) 
for (Ci; G) can be written k,f/', where k. is independ­
ent of p. 

Because the conversion matrix for weights con­
verts from constants with r vertices to constants 
with r vertices (and not edges), the strong bond weight 
function of a graph, Wi(fi), is in general a poly­
nomial in p. 

By including the subgraphs of G with isolated 
vertices we obtain corresponding results for the 
null-cluster convention, and we denote the corre­
sponding weights, independent of p in Theorem VII 
by k~. The bond weights of the site and the bond 
are found to be, for the site k = 0, kO = + 1 and, 
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for the bond k = + 1, kO = -1. The null-cluster 
convention leads directly to: 

Theorem VIII: For any graph c, 

(4.3) 

or with the null cluster convention, the bond and 
site weights are identical. 

Proof: The result follows because under the null­
cluster convention the site has weight + 1, the bond, 
weight -I, and the number of clusters for p = 1 
is the number of components in G. Therefore by the 
arguments of Theorem III the weights are defined by 

:E (ei; G}k~ = C(G), (4.4) 
i>2 

which is identical with the definitive equation (3.6) 
for weak weights. 

We examine the properties of weak weights in 
Sec. 5 and conclude this section with a closer study 
of the relation between k i and k~. 

To relate the two systems of weak bond weights, 
we first observe that corresponding to Theorem V 
we have the result that the weak k-wt of a graph G 
is the coefficient of the lath power of P in K(P; G). 
By an argument closely parallel to that of Theorem 
VI, it can be shown that graphs with a cut-vertex 
whose deletion, together with all its incident edges, 
leaves a graph with at least one edge have zero 
k-wt. The only graphs with cut-vertices that do not 
satisfy this latter condition are those with the 
obvious general topology 

/ < f ~(4.5) 
To determine the weight of the general graph a. 
of this type, we use 

K(P; a.) = 1 _ it = (;)p _ (;)]12 + ... 

+ (_l)l+l~)pl, (4.6) 

and therefore from the last coefficient the k-wt of 
a. = (-0<+\ 

For a general graph with no repeated bonds (Le., 
not a multigraph) the contribution of graphs of 
type (4.5) is 

:E :E (_I)l+l(iII)pl - laP, (4.7) 
all I 8 

ai tea 

where the sum runs over all the sites of G and ill is 
the number of edges incident on a site. Every a. 
can be associated with its center point except the 
bond al, which is counted twice. 

For the null cluster convention we must add the 
number of isolated clusters, and with the same 
restriction on multigraphs, 

(n.c.) = :E it· 
On adding (4.8) and (4.7) we are left with 

1 - laP, 

(4.8) 

(4.9) 

and the contribution from terms of type (4.5) cancel 
except for the site and the bond which now have 
weights + 1 and -1, respectively, and we may write 

k~ = k i = k j for all stars i > 2. (4.10) 

On a regular lattice of coordination number 2, with 
N sites, we may write 

(n.c.) = Nq·. (4.11) 

5. PROPERTIES OF THE WEAK WEIGHTS 

We now establish a number of theorems applicable 
to the weak k-wts defined for multiply connected 
graphs by 

:E (8 i ; M)ki = C(M). (5.1) 
i<!2 

Theorem IX: If two graphs are homeomorphic they 
have equal k-wts. 

Proof: The result is more or less obvious from 
the definitive equation (5.1). A tedious proof is 
readily constructed, but we confine our treatment 
to examples from which it is evident that the result 
will follow inductively. 

First, every Jordan7 curve has weight +1 since 
there is only one multiply connected subgraph, the 
graph itself, and the cyclomatic number is 1. [The 
site and bond are excluded by (5.1).J Thus 

k-wt of (n)" = + 1. (5.2) 

For stars of cyclomatic number 2 there is only 
one topological type-the (J graph. Any (J graph 
(r, 8, t), has three Jordan sUbgraphs: 

(r + 8)", (r + t)", (8 + 0., (5.3) 

all with weight +1, and therefore 

k-wt of (r,8, t), = -1. (5.4) 

For stars of cyclomatic number 3, there are 

r The various types of graph are described in II, Sec. 7. 
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four topological types, and we work with only one, 
the tetrahedral or a graph: 

'@ 0' (a, b; c, d; e, fl., 

of which the relevant subgraphs are the seven 
Jordan curves 

(a + e + f)", (a + d + e)", (b + e + e)", 

(b + d + f)", (a + b + e + d)", 

(a + b + e + I)", (e + d + e + I)", 
which contribute +7 and the six 8 graphs 

(a, e + f, d + e)e, (b, e + e, d + f)e, 

(e, a + f, b + e)e, (d, a + e, b + I)e, 

(e, a + d, b + e)e, (I, a + e, b + d)e, 

which contribute -6. Therefore 

(5.5) 

(5.6) 

k-wt of (a, b; e, d; e, I)" = +2. (5.7) 

Theorem IX effects a great reduction in the 
number of individual k-wts that need be worked, 
and we now state the k-wts of all stars with C(S) = 3: 

a graphs k-wt = +2, 

fJ graphs k-wt = +1, (5.S) 

'Y graphs k-wt = +1, 

o graphs k-wt· = + 1. 

For C(S) = 4 there are 17 topological types and 
we list these, together with their weak weights in 
the Appendix. 

In practice the determination of the weight of 
a graph from (5.1) becomes heavy as the cyclomatic 
number increases. Numerous results can be estab­
lished to effect a reduction in the calculation, and 
we quote two theorems,8 which we apply in a sub­
sequent paper to the problem of high-density 
expansions. 

Theorem X: If S is a planar topological star, that 
is, a planar star drawn to conform with the planar 
condition, and L* denotes summation over all sub­
stars that are not finite faces, then 

L* (8;; S)k. = O. (5.9) 
.;'2 

To avoid a special notation we adopt the convention 

8 In these theorems we use the terms star and substar in 
place of multiply connected graph and multiply connected 
subgraph. It is clear from the context that the bond is not 
intended. 

that the restriction L* imposed on the summation 
implies the corresponding restriction on the lattice 
constants. Thus in (5.9) the constant (s.; S) is the 
constant for the embeddings of 8. that are not finite 
faces. Likewise, in the next theorem LB implies that 
(8;; S) is the constant for embeddings that contain 
the boundary. 

Proof: The result follows from Euler's law of the 
edges which states that for a planar topological graph 
the cyclomatic number is equal to the number of 
finite faces. Each of these has weight unity in (5.1), 
and therefore the total contribution from stars that 
are not finite faces must be zero. 

Theorem XI: If S is a planar topological star and 
LB denotes summation over all substars which con­
tain the contour of the infinite face of S (the bound­
ary of S), then 

LB (8.; S)k. = 0, C(S) > 1. (5.10) 
i~2 

Proof: We show that if the result holds for C(Si) < n 
it will hold for C(S) = n. It is true for C(S) = 2. If 
S is a planar topological star, then so are all its 
substars, and we may divide these into mutually 
disjoint categories by the contours of their infinite 
faces. The members of any category are the sub­
stars of the graph bounded by the contour that 
contain the contour, and this graph must have 
cyclomatic number less than C(S) unless the contour 
is the contour of S. Assuming the result holds for 
C(8.) < C(S), the contribution from each category 
is zero unless the contour reduces to a finite face. 
H we exclude these, 

L* (8.; S)k, = 0 

by the previous theorem, and therefore 

L~ (s.; S)k. = 0, 

(5.11) 

(5.12) 

but the asterisk, which excludes finite faces from 
the summation, is now redundant since C(S) > 1 
and no finite face contains the boundary. Thus the 
result is proved. 

As an example we can now simplify the calculation 
of the k-wt of the tetrahedral graph (a, b; e, d; e, f)". 
The subgraphs which contain the boundary are: the 
graph itself and 

(a + d + e)" contribution + 1 

(a, e + f, d + e)e} 

(d, a + e, b + f)9 contribution -3, 

(e , a + d, c + b) 9 
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and therefore by (5.10) 

k-wt of (a, b; c, d; e, f)" = +2. (5.13) 

For completeness we now state the theorem for 
weak weights which corresponds to Theorem VI for 
strong weights. 

Theorem XII: If G is a graph with a cut set of n 
vertices, and further the section graph Gil' which 
has these n vertices as vertex set is a complete 
graph of n vertices, then with G' and Gil defined 
as in Theorem VI if kG. kG" kG'" kG'" denote the 
weak weights of G, G', Gil, Gil', respectively: 

(5.14) 

We omit the proof of this theorem since the 
result is most easily established by' techniques we 
shall describe in a subsequent paper; the direct 
proof is long. It is a result of great practical use. 
For example, the k-wt of the graph formed by 
placing a tetrahedron on one of the triangular faces 
of a square-based pyramid as drawn, 

(5.15) 

is found by taking G' as the pyramid (k = -3), 
Gil as the tetrahedron (k = 2), and Gil' as the 
triangle they have in common (k = 1), and therefore 
from (5.14), k = -6. 

The scope of Theorem XII is much extended by 
Theorem IX, and all homeomorphs of (5.15) will have 
k = - 6. A particularly useful application is to the 
large class of graphs which have a cut-set with n = 2, 
together with their homeomorphs. Then g'" is the 
bond, and the required weight is just the product 
-kG,kG'" Thus the weight of a B-graph is obtained 
as -1 since G' and Gil are polygons. The weights 
for fJ- and l'-graphs follow from the product of a 
polygon and a B-graph. 

Theorems X and XI can be extended to K-wts, 
but in the present paper we do not elaborate 
further the theory of strong weights since the theory 
of weak weights is the more elegant and more 
generally useful. 

6. EXPANSION FOR K(p; G) FOR THE 
TRIANGULAR LATTICE (SITE PROBLEM) 

For an infinite graph we neglect edge effects and 
denote by kep; G) the mean number of clusters 
per site. The first contributions to a low-density 
expansion, valid for small p, come from the site, 

the bond, and the triangle. Denoting the triangular 
lattice by T, we have 

k(p; T) = p - 3p2 + 2p3 + .... (6.1) 

To extend this series we examine contributions from 
star graphs with more than three sites. The number 
of stars embeddable in the triangular lattice in­
creases very rapidly with the number of sites, but 
many of these have zero K-wt. This is because of 
the presence of a cut-set of the special type described 
in Theorem VI; such cut-sets are of frequent occur­
rence on the triangular lattice. Thus for example 
the graphs 

all have zero K-wt. There are no strong embeddings 
of (4)p or (5)p and the next contributions to (6.1) 
arise from 

o 
K--l 

of which there are one per site, respectively, to 
give +p6 - p7. We summarize in Table I the graphs 
with 8, 9, and 10 sites required to extend (6.1) to 
the term in pIO and so obtain 

k(p; T) = p - 3p2 + 2p3 + p6 _ p7 

+ 3p8 _ 4p9 + 9pIO + (6.2) 

Further coefficients may be derived by direct enu­
meration, but this particular series is more readily 
extended by exploiting the exact matching relation 
which holds for the triangular lattice (I Sec. 3). 
That (6.2) is correct may be verified by comparison 
with Eq. (3.4) of I. For three-dimensional lattices 
no such matching relations exist, and the methods 
of this section enable the corresponding expansions 
for mean number for the simple cubic, body-centered 
cubic, and face-centered cubic lattices to be derived. 
We shall show in a subsequent paper that these 
expansions are of use in extending series expansions 
for the mean size of clusters at low densities. 

7. EXPANSION FOR f{(p; G) FOR THE 
TRIANGULAR LATTICE (BOND PROBLEM) 

For an infinite lattice we derive the expansion for 
the mean number of bond clusters per site. The 
expansion for the triangular lattice starts with the 
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contribution from the graphs of type (4.5) which, 
per site, amounts to 

3p - 15p~ + 2op3 - 15p' + 6pl - p6. (7.1) 

TABLE I. Some graphs on the triangular lattice that contribute 
to kePi T) 

Graph-

o 
o 

o 

Number . h 
(per site) K-welg t 

3 +1 

2 

6 -1 

3 

3 +1 

6 

6 -1 

3 H 

-We illustrate the individual apace-types. 

Contribution 

+6plO 

_6plO 

TABLE II. Summary of stars on the triangular lattice !l.nd 
their contributions to IC(p; T). 

polygons 
(Jordan curves) 
6-graphs 
a-graphs 
p-graphs 
'Y-graphs 
&-graphs 
F-graphs 
H-graphs 
K-graphs 
L-graphs 
N-graphs 
O-graphs 
Contribution: 

k-wt 1=7 1 = 8 
+1 42 123 

-1 
+2 
H 
+1 
+1 
-3 
-1 
-1 
-1 
-1 
-1 

42 
o 
o 
6 
o 
o 
o 
o 
o 
o 
o 

+6p7 

165 
o 
6 

36 
o 
o 
o 
o 
o 
o 
o 

+Op8 

1=91=10 
380 1212 

609 
20 
54 

162 
o 
o 
o 
6 
o 
6 
2 

+ 13pe 

2283 
120 
375 
666 

6 
15 
24 
48 
12 
48 
12 

+27pl0 

TABLE III. Weak lattice constants for the triangular lattice. 

8-graphs. 

",-graphs 

{J-graph8 

'Y-graphs 

&-graphs 

1 = 7 

1=8 

1 = 9 

1 = 10 

1 = 9 

I =- 10 

1=8 
1 = 9 

I ... 10 

1 =- 7 
1 =- 8 

1=-9 

1 = 10 

1 = 10 

(1,2,4)6 =- 30 
(1,3,3)6 = 12 
(1,2,5)6 = 96 
(1,3,4)6 = 60 
(2,2,4)6 = 6 
(2,3,3)6 = 3 
(1,2,6)6 = 312 
(1,3,5)0 = 168 
(1,4,4)0 =- 69 
(2,2,5)6 =- 30 
(2,3,4)6 =- 30 
(1,2,7)6 =- 1068 
(1,3,6)0 =- 516 
(1,4,5)0 =- 378 
(2,2,6)0 =- 132 
(2,3,5)0 =- 126 
(2,4,4)0 = 63 

(1,1;1,1;1,4) .. = 6 
(1,1;1,2;1,3) .. = 12 
(1,2;1,2;1,2) .. = 2 
(1,1;1,1;1,5)", = 24 
(1,1;1,2;1,4) .. = 48 
(1,1;1,3;1,3) .. = 24 
(1,2;1,2;1,3) .. = 24 
(1,2;1,2;1,I)p = 6 
(1,2;1,2;1,2)p = 30 

~
1,2;1'3;1'I)p = 24 
1,2;1,2;1,3)p = 102 
1,2;1,2;2,2)p = 51 

(1,2;1,3;1,2)p = 120 
(1,2;1,4;1,I)p =- 60 
(1,2;2,2;1,2)ft = 12 
(1,2;2,3;1,I)p = 6 
(1,3;1,3;1,I)p = 24 

(1,2;1,2;1),. = 6 
(1,2;1,2;2).,. = 12 
(1,2;1,3;1).,. = 24 
(1,2;1,2;3).,. = 30 
(1,2;1,3;2).,. = 48 
(1,2;1,4;1).,. = 60 
(1,3;1,3;1)'Y = 24 
(1,2;1,2;4).,. = 96 
(1,2;1,3;3).,. = 108 
(1,2;1,4;2).,. = 108 
(1,2;1,5;1).,. = 168 
(1,2;2,2;3),. = 12 
(1,2;2,3;2).,. = 12 
(1,2;2,4;1),. = 12 
(1,3;1,3;2).,. = 42 
(1,3;1,4;1),. = 108 

(1,2,2,5)3 = 6 
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Up to six bonds the only star graphs are the following: 

Graph 
(3),. 
(4),. 
(5),. 
(1, 2, 2), 
(6),. 
(1, 2, 3), 

k-weight 

+1 
+1 
+1 
-1 
+1 
-1 

Number 
2 
3 
6 
3 

15 
12 

Contribution 
+ 2p3 

+ 3p4. 
+ 6pG 

3 -6 - P 
+I5p8 

-I2p8 

and on adding these contributions to (7.1) 

k(p; T) = 3p - 15p2 + 22p8 - 12p' 

+ 9p5 + 2p6 + ... (7.2) 

We have extended (7.2) by enumerating every 
star graph on the triangular lattice with 7, 8, 9, 
and 10 lines, thus adding the terms 

+6p7 + op8 + 13p9 + 27plO. (7.3) 

We give in Table II a summary of the contributions 

from different topological types, and in Table III 
we list the lattice constants for all graphs of cyclo­
matic number 3 and 4. 

In an analogous manner expansions can be ob­
tained for other lattices. The graphs required are 
numerous but not too difficult to count in the weak 
system on a computer .The weight problem is made 
manageable by the results of Sec. 5. We shall sub­
sequently apply these series developments to a study 
of the mean number function and also to extending 
the corresponding mean size series. 

We have verified (7.3) by deriving the high­
density expansion for the matching lattice; that is, 
the high-density expansion for the bond problem 
on the honeycomb lattice. 
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APPENDIX: THE 17 TOPOLOGICAL TYPES OF STAR WITH C(S) = 4 

A graph ® E graph 0 I graph () M graph 

~ k = -5 k = -1 k = -1 k = -1 

B graph 00 F graph 

~ J graph ® N graph E1 k"" -4 k = -3 k = -2 k = -1 

C graph @ G graph @ K graph @ o graph 

~ k = -2 k = -2 k = -1 k = -1 

D graph @ H graph § L graph © P graph ~ k = -1 k = -1 k = -1 k = -1 

Q graph @ k = -1 
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The Enumeration of Homeomorphically Irreducible Star Graphs 

B. R. HEAP 

Mathematics Division, National Physical Laboratory, Teddington, Middlesex England 
(Received 21 February 1966) , 

In expressing properties of interacting systems in the form of series, in many cases only summation 
?ver star graphs is involv~d. T~e ident.ification and classification of such graphs is simplified by reduc­
l~g them to hom~omorphically IrreduClble st!l'rs. These graphs can be regarded as being all the possible 
different topologICal types of star. A method IS described which has been used to produce all the differ­
ent h~meomorphically irreducible stars which have cyclomatic numbers ~ 5. In particular, it has been 
estabhshed that there are 118 such graphs with cyclomatic number 5, 111 of which are planar. Dia­
grams of these graphs are appended, and a table of their k weights which are needed for obtaining 
series for percolation processes, is also given. An extension of the m~thod has been used to count the 
nu~be!s ~f homeomorphically irreducible stars containing up to 8 vertices and 12 edges, a table of 
whlCh IS gIven. 

1. INTRODUCTION 

A RECENT paper!, hereafter referred to as I, 
discussed the application of graph theory to 

problems involving the obtaining of series expansions 
needed for the investigation of the statistical me­
chanics of interacting systems on crystal lattices. In 
a subsequent paper,2 Essam and Sykes used some of 
the concepts introduced in I in order to obtain many 
general theorems for the problem of obtaining series 
expansions for percolation processes. For a full bibli­
ography of this and other similar pro blems, the reader 
is referred to the reviews of Domb,3 Fisher,4 Uhlen­
beck and Ford,5 and to the papers mentioned pre­
viously. In many cases, the series expansion is es­
sentially equivalent to a summation with appropriate 
weights over a restricted class of linear graphs known 
as stars. The problem of the classification of such 
graphs was considered in I, where it was shown that 
the classification could be simplified by reducing the 
stars to simpler graphs which we refer to as homeo­
morphically irreducible stars. The enumeration of 
homeomorphically irreducible graphs is one of the 
unsolved problems in the field of the counting of lin­
ear graphs.6 In this paper we describe a method 
which has been used to enumerate and obtain all 
homeomorphically irreducible stars containing up to 
8 vertices and 12 edges. A knowledge of these graphs 

1 M. F. Sykes, J. W. Essam, B. R. Heap, and B. J. Hiley, 
J. Math. Phys. 7, 1557 (1966). 

I J. W. Essam, and M. F. Sykes, J. Math. Phys. 7, 1573 
(1966). 

3 C. Domb, Phil. Mag. Suppl. 9, 149 (1960). 
'M. E. Fisher, J. Math. Phys. 4, 278 (1963). 
6 G. E. Uhlenbeck and G. W. Ford, Studies in Statistical 

Mechanics, J. de Boer and G. E. Uhlenbeck, Eds. (North­
Holland Publishing Co., Inc., Amsterdam, 1962), Vol. 1, 
Part B. 

6 F. Harary, Applied Combinatorial Mathematics, F. 
Beckenbach, Ed. (John Wiley & Sons, Inc., New York, 1964), 
Chap. 6. 

will allow percolation series to be extended to higher 
orders. 

We begin by introducing the graph-theoretical 
definitions and concepts needed for this work. 

2. GRAPH-THEORETICAL CONCEPTS 

A graph G consists of a set S of vertices together 
with (undirected) edges joining some of the vertices. 
A pair of vertices may be joined by more than one 
edge (parallel edges), but we do not allow edges 
which join a vertex to itself (loops). A graph is said 
to be disconnected if it is possible to divide the vertex 
set S into two disjoint subsets S1) S2 such that 
there are no edges joining any vertex t S1 to any 
vertex t S2; otherwise, the graph is said to be connected. 
A cut vertex of a connected graph G is a vertex t S 
whose removal from G together with its incident 
edges disconnects the graph. A connected graph con­
taining no cut vertices is called multiply-connected 
and is usually referred to as a star. 

The number of edges incident at a vertex of a 
graph is known as the degree of the vertex. Two 
graphs are isomorphs if there is a one-to-one cor­
respondence between their vertex sets such that the 
corresponding vertices are joined by m ;::: 0 edges 
in one if and only if they are so joined in the other. 
If a graph G contains a vertex of degree 2, A say, 
which is joined by edges to vertices B, C, the process 
of removing A from S together with the removal 
of edges AB, AC and the addition of an edge BC 
is known as the suppression of the vertex A. (It is 
possible that the suppression of a vertex leads to 
a graph containing a loop which is forbidden by 
our definition of a graph. It will become evident 
that this cannot happen for the special graphs that 
we are to consider in this work.) The reverse process 
of replacing an edge BC by a new vertex A and 

1582 
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joining A, B and A, C by edges is known as the 
insertion of the (second-degree) vertex A. We then 
say that two graphs are homeomorphs if by means 
of the suppression and insertion of second-degree 
vertices one can be transformed into an isomorph 
of the other. Thus, homeomorphs can be regarded 
as having the same basic topology. A graph which 
contains no vertex of degree 2 (i.e., from which no 
vertices can be suppressed) is referred to as homeo­
morphically irreducible. (We normally abbreviate 
this to HI.) 

As was mentioned in Sec. 1, in the applications 
of graph theory to physical problems we can normally 
restrict attention to stars. Accordingly, in the re­
mainder of this paper we are concerned solely with 
such graphs. Let a given star contain n vertices 
and m edges. The cyclomatic number v of the graph 
is defined by 

v=m-n+1. (1) 

Since the insertion of a second-degree vertex on 
an edge of such a star increases both m and n 
by unity, the cyclomatic number is unchanged. Thus, 
graphs which are homeomorphic have the same 
cyclomatic number. (The converse is not necessarily 
true.) It was shown in I that stars having small 
values of v could conveniently be classified by 
specifying their basic topology, i.e., by suppressing 
all vertices of degree 2, thereby producing a homeo­
morphically irreducible star (HI star). In order to 
achieve the classification, it is necessary to enumerate 
all the different HI stars for small values of v. For 
v = 2 there is only one such graph, for v = 3 there 
are 4 such graphs, and Essam and Sykes2 have 
shown that there are 17 such graphs with v = 4 
(these are illustrated in the Appendix of their paper). 
In Sec. 3 we describe a method for the evaluation 
of such graphs which has been used principally to 
enumerate the HI stars having cyclomatic number 5. 

3. ENUMERATION OF HOMEOMORPHICALLY 
IRREDUCIBLE STARS 

All the different HI stars having cyclomatic num­
ber v (v ~ 3) can be obtained from those having 
cyclomatic number v-I by running through all 
possible ways of: 

(a) joining any two distinct vertices by an edge; 
(b) inserting a second-degree vertex on any edge 

and then joining it to any other vertex by an edge; 
(c) inserting two second-degree vertices on any 

two (not necessarily distinct) edges and joining them 
by an edge. 

That this procedure produces HI stars having 
cyclomatic number v can be seen from Eq. (1), since 
in (a) m is increased by unity and n remains un­
changed; in (b) m is increased by 2 and n by 1; 
and in (c) m is increased by 3 and n by 2. It is clear 
that the above procedure generates all the possible 
HI stars with cyclomatic number v at least once. 
This method allows us to produce the graphs having 
v ::::;; 4 without too much difficulty just by using 
pencil and paper. However, when we consider the 
case v = 5 a more automatic process is required, 
since in running through the above procedure each 
possible HI star may be produced several times and 
the recognition and identification of a graph becomes 
extremely hazardous. Accordingly, we have used a 
computer to produce these graphs. 

There are two main problems in connection with 
the use of a computer to enumerate graphs, namely 
the actual representation of a graph in the computer 
and the identification of a particular graph amongst 
a dictionary of possibly many graphs. A convenient 
method of representing a graph is by means of its 
adjacency matrix. If the vertices of a graph having 
n vertices are labeled 1, 2, ... , n, the adjacency 
matrix A = (a;;) is the n X n matrix in which 

ali = number of edges joining vertex i to vertex j. 

(2) 

However, in order to produce this matrix it is first 
necessary to label the vertices-this can conveniently 
be done by assigning the label 1 to the vertex having 
the highest degree; the label 2 to the vertex having 
the next highest degree; etc. Clearly this labeling 
is not necessarily unique. 

In identifying a particular graph, we compare its 
adjacency matrix with those of all previously known 
graphs having the same set of degrees. Should the 
graph not be so identified, we interchange two rows 
and columns of A (i.e., interchange the labels of two 
vertices of the graph) and repeat the comparison 
process. The interchanging is done according to a 
scheme which preserves the set of degrees as before 
and which Ultimately runs through all possible label­
ings of the graph consistent with the labeling scheme. 
The method of doing this is an extension of a scheme 
of the author's7 which runs through all possible 
permutations of N objects by means of interchanges. 

By forming the graphs according to the scheme 
mentioned above and then using the identification 
procedure, we obtain the HI stars having v = 5 
and find that there are 118 such graphs. Diagrams 

7 B. R. Heap, Computer J. 6, 293 (1963). 
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TABLE 1. The k weights of the homeomorphically irreducible stars with cyclomatic number 5. 

Graph Grabh 
number k weight num er k weight 

1 1 31 1 
2 1 32 1 
3 1 33 1 
4 1 34 1 
5 1 35 1 
6 1 36 2 
7 1 37 2 
8 1 38 2 
9 2 39 1 

10 1 40 3 
11 1 41 4 
12 1 42 1 
13 1 43 1 
14 2 44 2 
15 1 45 1 
16 1 46 2 
17 2 47 3 
18 1 48 4 
19 1 49 1 
20 1 50 1 
21 1 51 2 
22 2 52 1 
23 1 53 1 
24 1 54 1 
25 1 55 1 
26 1 56 2 
27 2 57 1 
28 1 58 1 
29 3 59 1 
30 2 60 1 

of these graphs are given in the Appendix. A more 
detailed discussion of the computer program is given 
in National Physical Laboratory Mathematics Divi­
sion Report No. Ma. 57, which is available from 
the author. 

In their work on series expansions for percolation 
problems, Essam and Sykes showed that, in the most 
useful case, all homeomorphs enter the series with 
the same weight (the k weight). The k-weight keG) 
of a graph G is defined recursively by 

E keg) = P, (3) 
gr;;G 

where g C G denotes any subgraph of G which is 
a star, and the summation extends over all such 
subgraphs.2 (For a full discussion of k weights the 
reader is referred to the aforementioned paper.) 
Most of the 118 HI stars contain a pair of vertices 
which are joined by more than one edge-for such 
a graph, Theorem XII of Essam and Sykes gives 
the k weight immediately as -1 times the k weight 
of the graph which is obtained by removing one 
of the parallel edges. However, in 14 cases no such 
parallel edges occurred and the k weights were de­
rived using (3). The k weights are given in Table I. 

The enumeration of the graphs took approximately 

Grabh 
num er k weight 

Graph 
number k weight 

61 2 91 2 
62 2 92 4 
63 2 93 4 
64 1 94 5 
65 2 95 1 
66 2 96 2 
67 2 97 3 
68 1 98 3 
69 4 99 6 
70 4 100 4 
71 5 101 7 
72 1 102 8 
73 2 103 1 
74 3 104 1 
75 3 105 1 
76 2 106 2 
77 6 107 2 
78 5 108 1 
79 4 109 2 
80 1 110 2 
81 1 III 4 
82 2 112 4 
83 1 113 5 
84 1 114 4 
85 1 115 8 
86 2 116 10 
87 2 117 11 
88 1 118 12 
89 2 
90 2 

two hours using the English Electric-Leo KDF9 
computer of the National Physical Laboratory. The 
enumeration of the HI stars having cyclomatic 
number 6 would not be feasible using the program 
outlined above, since the identification of graphs 
having 10 vertices, each of which has degree 3 
would take an inordinate length of time. However, 
the use of different techniques for the identification 
of a graph which are at present under investigation 
should allow such graphs to be enumerated in the 
future. 

As was mentioned in Sec. 1, the numbers of homeo­
morphically irreducible graphs having n vertices and 
m edges are unknown except for trivial cases. How­
ever, by using the methods mentioned above we 
have been able to obtain the numbers of HI stars 
which contain up to 8 vertices and 12 edges. For 
example, HI stars having n vertices and m edges 
can be formed (i) from those having n vertices and 
m - 1 edges by using procedure (a); (li) from those 
having n - 1 vertices and m - 2 edges by using (b) ; 
and (iii) from those having n - 2 vertices and m - 3 
edges by using (c). It is thus necessary to run through 
these three possible ways of forming the graphs. 
The numbers of the graphs are given in Table II. 

It is also of interest to examine which of the HI 
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T AllLE II. The numbers of homeomorphically irreducible 
stars having n :::; 8 vertices and m :::; 12 edges. 

n 2 3 4 5 6 7 8 

m 
3 1 
4 1 
5 1 1 
6 1 2 2 
7 1 3 5 
8 1 4 13 4 
9 1 6 26 24 5 

10 1 7 47 84 38 
11 1 9 78 233 216 23 
12 1 11 126 557 914 314 16 

stars having a particular value of /I are planar since 
these are the different ways of dividing up the plane 
into /I + 1 regions (with the condition that the 
ensuing graph is a star). For /I = 2,3,4, 5 there are 
1, 4, 16, 111 such graphs, respectively. 
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APPENDIX 

We append here in Tables III, IV, and V diagrams 
of all HI stars with cyclomatic numbers /I ~ 5. 
Those with /I ~ 4 were previously illustrated by 

T AllLE III. Homeomorphically irreducible stars with 
cyclomatic numbers 2 and 3. 

2 3 4 

TABLE IV. Homeomorphically irreducible stars with 
cyclomatic number 4. 

2 3 4 5 

6 7 B 9 10 

/I 12 13 14 15 

16 17 

Essam and Sykes2 and are included here for com­
pleteness. For /I = 2, graph 1 in the list corresponds 
to the O-graph of Essam and Sykes. For /I = 3, 
graphs 1, 2, 3, 4 correspond to the 8, 'Y, {3 and a­

graphs, while for /I = 4, graphs 1, 2, ... , 17 cor­
respond to the Q, P, ... , A graphs. 

The vertices of the graphs have been labeled 
1, 2, ... according to an extension of the method 
described in Sec. 3 which was used in the com­
puter program. The graphs have been ordered and 
assigned labels 1, 2, ... according to an extension 
of a scheme suggested by Nagle. 8 Full details of 
these schemes are given in the report mentioned 
above. 

8 J. F. Nagle, J. Math. Phys. 7, 1588 (1966). 
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TABLE V. Homeomorphically irreducible stars with cyclomatic number 5. 

1 2 3 4 5 41 42 43 44 45 

6 7 8 9 10 46 47 48 49 50 

@ ~ ® ,.4., 0 \:!~to,o"e·{) 
II 12 13 14 15 51 52 53 54 55 

@,4.,4t·'®·,o· e@{)SflJ 
16 17 18 19 20 56 57 58 59 60 

21 22 23 24 25 61 62 63 64 65 

'4;47'~~-'~' ,t1·e"o- B 18 
I j Z 3 

H U ~ a ~ M ~ ~ " ro 

-0(::1"0 'O"eJ ®"e"*~r~ 
31 32 33 34 35 71 72 73 74 75 

36 37 38 39 40 76 77 78 79 80 
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(TABLE V-Continued) 

BI B2 B3 B4 B5 101 /02 IOJ 104 105 

· , · . A~~ (!)(1J " ~Ki>i 00'~'\ij'\d' , .. ,'.,'. ·,'·,([D:·~·0 
B6 B7 BB B9 90 106 107 lOB 109 I/O 

91 92 93 94 95 III 112 113 114 115 

96 97 9B 99 100 116 117 liB 
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On Ordering and Identifying Undirected Linear Graphs 
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. A generallin~ar ordering relation is presented which completely orders any subset of the undirected 
line~r graphs 'Ylth the same number of vertices. The discussion is then specialized to the ordering and 
the Ide~tificatlon .of the unlabeled stars with no vertices of degree two, which faithfully represent 
the basIC topologies of all stars. 

INTRODUCTION 

T HE study of linear graphs is important to 
mathematical physics because graphs frequently 

provide a convenient representation of the terms 
in series (or perturbation) expansions which are used 
in discussing otherwise intractable problems. Partic­
ular problems in statistical mechanics which may be 
cited are the Mayer cluster expansion for the virial 
series of a gas,. the Ising-model series expansions,2-4 
the percolation problem, 5 the excluded volume pro b­
lem,8 and the residual entropy of ice problem.7 

When it becomes necessary to consider complex 
linear graphs certain problems arise. First, it be­
comes difficult to obtain all the graphs of the type 
wanted. Secondly, there is the problem of identifying 
a graph with its isomorph in a list. The technique of 
drawing the graph in several different ways with 
the hope of making it look like one in the list is 
very tedious for even moderately complex graphs. 
The solution to the identification problem is related 
to the solution to the next problem. This is the 
question of how to order the graphs conveniently in a 
numbered list in such a way as to maximize the 
usefulness of the list to a large number of research 
workers. 

Despite the obvious advantages of adopting a 
systematic ordering and notation for linear graphs, 
there have been two excellent reasons for not doing 
so. The first is that different problems have different 

* Present address: Department of Chemistry, Cornell 
University, Ithaca, N. Y. 

1 G. E. Uhlenbeck and G. W. Ford, Studies in Statistical 
Mechanics, J. De Boer and G. E. Uhlenbeck, Eds. (North­
Holland Publishing Company, Amsterdam, 1962), Vol. 1, 
p. 123, and Proc. Natl. Acad. Sci. U. S. 42, 122, 203, 529 
(1956). 

s C. Domb, Advan. Phys. 9, 150 (1960). 
aM. E. Fisher, J. Math. Phys. 4, 278 (1963). 
'M. F. Sykes, J. W. Essam, B. R. Heap, and B. J. Hiley, 

J. Math. Phys. 7, 1557 (1966). 
& J. W. Essam and M. F. Sykes, J. Math. Phys. 7 1573 

(1966). ' 
• M. F. Sykes, J. Math. Phys. 2, 52 (1961). 
7 J. F. Nagle, J. Math. Phys. 7, 1484 (1966). 

"natural" groupings of linear graphs. For example, 
most problems require only well-defined subsets of 
linear graphs, such as the Mayer virial series for a 
gas which requires only the multiply connected (no 
articulation vertices) and unlabeled graphs called 
stars.1 Furthermore, within these subsets different 
gross criteria are important for different problems. 
For example, for the high-temperature Ising-model 
series the number of edges e is of more importance 
than the number of vertices v, while the reverse is 
true for the residual entropy of ice series.7 Other 
criteria for classification are the cyclomatic number; 
the degree of each vertex (number of edges incident 
to the vertex); the number of double, triple, ... , 
edges; and so on. 

The second reason for not adopting a systematic 
ordering of linear graphs, even for use with special­
ized problems, is the difficulty in finding a completely 
systematic ordering. For example, if one uses any 
combination of the criteria mentioned above one 
finds that eventually there are distinct graphs not 
differentiated by the criteria which must then be 
ordered arbitrarily. This ultimate arbitrariness has 
undermined the effort to organize graph data in a 
systematic way. 

The primary purpose of this paper is to show in 
Sec. I how the "ultimate arbitrariness" in ordering 
linear graphs can be resolved in a conceptually 
simple way through the use of what we will call the 
canonical matrix of a graph. Indeed, all undirected 
linear graphs with v vertices could be ordered using 
only the canonical matrix. However, the considera­
tions mentioned above concerning the natural group­
ings of graphs for particular problems show that this 
is an unwise program. Rather, it is felt that some 
"initial arbitrariness" in ordering graphs ahould 
remain to suit the particular problem in hand. In 
this spirit, the more modest program of ordering the 
stars with no vertices of degree two is discussed in 
Sec. II as an example of what can be done for graphs 
relevant to particular problems. 

1588 
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I. A LINEAR ORDER RELATION FOR GRAPHS 
WITH V VERTICES 

A complete (linear) order relationS on a set X is 
defined as a binary relation, >-, such that for x, y, 
and z belonging to X, we have 

(1) x >- y, and y >- z implies x >- z, 
(2) x >- y, and y >- x implies x = y, 
(3) x ~ y implies either x >- y or y >- x. 

The matrix associated with a graph (adjacency 
matrix) is defined as the square array (au), where 
aH is the number of edges joining the ith and ith 
vertices.9 In general, there are many matrices as­
sociated with an unlabeled graph because the vertex 
numberings can be permuted. A procedure will be 
described which selects one of these matrices which 
then is defined as the canonical matrix of the graph. 

Let us define an order relation for v X v matrices. 
Let A = (a i ;) and B = (b i ;). Then, we scan the two 
matrices row by row, comparing aij to bi ;, and stop 
the first time that a i ; ~ bi ;. If aij > bi ;, then we 
say that A precedes B. More formally, let us define 
(m, n) < (i, j) if and only if [em < i) or (m = i and 
n < j)]. Then, A precedes B if and only if there 
exists no (i, j) such that {(b i ; > aii) and [am .. = bm .. 

for all (m, n) < (i, j)]). Clearly, either (A precedes 
B) or (B precedes A). If (A precedes B) and (B 
precedes A), then (A = B). Finally, it is trivial to 
verify that if (A precedes B) and (B precedes C), 
then (A precedes C). Thus, this definition produces 
a linear ordering of v X v matrices. 

It is now possible to define the canonical matrix 
of a graph as that matrix associated with the graph 
which precedes all others. Since the number of 
matrices associated with a finite graph is finite, this 
definition is valid. However, all the matrices as­
sociated with the graph may not be acceptable 
candidates for the canonical matrix. For example, 
if graphs with one colored vertex and v-I ordinary 
vertices were under consideration, it would be 
natural to require that the colored vertex be labeled 
1. This imposes a restriction which determines the 
acceptable matrices associated with the graph. 
Therefore, it is suitable to define the (restricted) 
canonical matrix as that acceptable matrix associated 
with the graph which precedes all others which also 
satisfy the restrictions in question. We note that 
the canonical matrix defines a canonical vertex 
numbering, modulo symmetry operations of the 
graph. 

S J. L. Kelly, General Topology (D. Van Nostrand, Inc., 
Princeton, N. J., 1955), p. 14. 

I C. Berge, The Theory of Graphs, A. Doigt, Translator 
(John Wiley & Sons, Inc., New York, 1962), p. 130. 

The final obvious step is to order the graphs in the 
subset in question according to the matrix order of 
the canonical matrices. Since the correspondence 
between graphs and canonical matrices is one-to-one 
and the matrix ordering is complete, the correspond­
ing graph ordering will also be complete.10 

n. ON ORDERING AND IDENTIFYING THE STARS 
WITH NO VERTICES OF DEGREE TWO 

The object of this section is to order the stars 
(undirected and unlabeled graphs with no articula­
tion vertices' ) with no vertices of degree two. The 
reason for singling out the stars with no vertices of 
degree two is that they faithfully represent the basic 
topologies of all stars. This follows because any star 
can be derived from one and only one of the stars 
with no vertices of degree two under the topologically 
invariant operation of inserting vertices of degree 
two. It has been suggested that· stars be partially 
classified first by topological type.4.11

•
12 With this 

use in mind, the stars with no vertices of degree two 
will be called star types in this paper .13 The star types 
are useful for obtaining the stars, which are necessary 
for the calculation of lattice constants, which in 
turn are required for the Ising-model series expan­
sions and various other physical problems.2.4.5.7.'2 

In an adjoining paper, B. R. Heap has discussed 
how the star types may be obtained using a com­
puter." In an appendix of Heap's paperll is a list 
of the star types for cyclomatic numbers three, four, 
and five ordered in the way suggested here. This 
list should be referred to for examples. 

The canonical matrix ordering described in the 
last section can be applied to completely order any 
subset of the star types. Therefore, this section is 
mainly concerned with the pre-ordering of the star 
types into convenient subsets. Of course, this pre-

10 We note that the restriction to subsets with a fixed 
number of vertices could be removed if there were no vertices 
of degree zero or, alternatively, if there were no loops, which 
are edges that connect a vertex to itself. In the latter case 
the adjacency matrix is invertebrate, i.e., ali = 0, and one 
can alter the matrix definition so that aii equals the degree 
of the ith vertex. Then, in both cases a matrix with smaller 
v could be compared to one with larger v by filling in some 
zeros. It should also be noted that as the matrix ordering is 
defined the more complex graphs precede the simpler ones. 
However, this is the way which is best suited to the appli­
cation in Sec. II. 

11 B. R. Heap, J. Math. Phys. 7, 1582 (1966). 
12 G. W. Ford and G. E. Uhlenbeck, Proc. Nat!. Acad. 

Sci. U. S. 43, 163 (1957). 
13 An alternative name to star type might be star complex 

since the topological space of a graph is a complex. A partic­
ular triangulation of the complex corresponds to a particular 
set of vertices of degree two. Unfortunately, the name star 
has a different meaning in topology, so it seems unwise to 
combine it with a topological term. Other names used in 
the literature are homeomorphically irreducible star by 
Heapll and homeomorphic type by Ford and Uhlenbeck. lJ 
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ordering is subject to the personal preferences of 
the individual doing the ordering. To obtain an 
ordering as objective as possible discussions have 
been held with other workers who use these graphs. 

The most conspicuous quantifiable features of 
the star types are the number of vertices v, the 
number of edges e, and the cyclomatic number 
c = e - v + 1. Fortunately, it does not matter 
much which two of these criteria are chosen for 
ordering purposes, since the star types can easily be 
rearranged if one prefers a different choice. For the 
problems considered by Sykes, it is most convenient 
to arrange the star types first by increasing cyclo­
matic number and next by increasing number of 
vertices.5 

One might consider the criterion of planarity to 
be more fundamental than the above criteria. How­
ever, two considerations eliminate this criterion. 
First, it is of no use in constructing lists of graphs. 
Second, for identification it is easier to count v and 
e than it is to convince oneself that a graph is non­
planar. Also, planarity does not lend itself to com­
puter identification. 

Next, a less obvious ordering criterion is intro­
duced. Define the degree-tuple of a graph as 
(D!, ... ,D i , ••• ,D.) where D i , for i = 1,2, ... ,v, 
is the degree of the ith vertex and the numbering of 
the vertices is restricted by i < j if Di > D j • Thus, 
the degree-tuple of a graph is a v-tuple of nonincreas­
ing numbers, such as (5, 4, 4, 4, 3). Of course, 
e = !CD I + D2 + '" + D.) so the degree- tuple 
supplies one with v, e, and c. Now, let us define an 
ordering relation for degree-tuples as CD!, '" , D.) 
precedes (D:, ... , D~) if there exists some i such 
that D. > D~ and D; = D~ for j < i. Let us agree 
to order subsets of star types with the same c and 
v by the degree-tuple ordering. For example, the 
set of star types with degree-tuple (5, 4, 4, 3) pre­
cedes the set with degree-tuple (4, 4, 4, 4) and 
(6, 5, 3) precedes (6, 4, 4). 

The degree-tuple ordering will not be fully justi­
fied until the application of the canonical matrix 
is discussed. However, certain advantages can be 
mentioned now. The problem of counting the num­
ber of two overlapping polygons on a lattice2 re-

2 

1 6 FIG. 1. Star type number 61 
with c = 5. 

quires that each D. ~ 4, the Ising-model magnetic 
problem requires precisely two odd Do,6 and the 
residual entropy of ice problem requires all D; = 4.7 
Therefore, in each of these cases knowledge of the 
degree-tuple eliminates many subsets immediately. 
Furthermore, there are 38 star types in the subset 
c = 5 and v = 6: this is a large enough number to 
warrant additional labels to facilitate identification. 

So far, little has been said about the identification 
problem. The identification procedure which ac­
companies the ordering introduced thus far is: count 
the degree of each vertex in turn, compose the degree­
tuple, and from the degree-tuple compute e = 
!~;Di and c = e - v + 1. Now, when one is counting 
the vertex degrees it is easy to notice additional 
information concerning the numbers of single, 
double, triple, etc., edges incident to each vertex. 
(A double edge consists of two edges connecting the 
same two vertices.) Let s;, d i , ••• , hi, denote, 
respectively the number of single, double, ... , 
highest multiple, edges incident to the ith vertex. 
Then, this information may be recorded as follows: 

Abstract Form Star Type 61, c = 5 
(See Fig. 1) 

[
1, I, 1, 1,0,0] 
2, 2, 1, 1, 3, 3 

(4,4,3,3,3,3), 

(D!, D 2 , ••• , D.) 

Clearly, s; + 2d; + 3t; + .. , = D;. For the spe­
cific example shown in Fig. 1, which is number 61 
in Heap's list for c = 5, the labeling of the vertices 
3 and 6 can be permuted and the array in braces 
becomes 

[
1,I,O,I,O,IJ 

2,2,3,1,3,1 

(4,4, 3, 3, 3, 3) 

and the degree-tuple is unchanged. Clearly an order 
relation for arrays in braces can be defined similarly 
to the way the order relation was defined for ma­
trices. Simply scan the array column by column until 
there is disagreement. The array with the larger 
entry in this position of first disagreement precedes 
the other. Therefore, it is possible to define the 
decomposed degree-tuple to be that array in braces 
of the star type which precedes all other arrays 
with the restriction that only arrays are to be con-
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sidered which satisfy 8, + 2d, + 3t; + '" = D; 
as defined by the degree-tuple. It is easily verified 
that the first array presented for star type shown in 
Fig. 1 gives the decomposed degree-tuple. Other 
examples of decomposed degree-tuples which pre­
cede all the other possible arrays under the permis­
sible permutations are 

[
0, I, I, I, I, OJ 

5,2,2,2,2,3 

(5, 4, 4, 4, 4, 3) 

and f
I' 1,0,0] 
1,0,2,1 

0,1,0,1 

(5,4,4,3). 

Now, the obvious ordering for subsets of star types 
with the same degree-tuple is by the order relation 
for decomposed degree-tuples. For example, the 
ordered decomposed degree-tuples for the (4, 3, 
3, 3, 3) degree-tuple are 

[
2,1,1,1,IJ' [1,1,1,1, OJ, [I, 1,0,0, OJ, 
0,1,1,1,1 2,1,1,1,3 2,1,3,3,3 

and [O,O'O'O'OJ 
4,3,3,3,3. 

Now, many star types for c :s; 5 can be uniquely 
determined from the decomposed degree-tuple. The 
largest subset with the same decomposed degree­
tuple in c = 5 consists of eight star types. (These 
are numbered 61 to 68 in Heap's list.) Thus, it 
seems that further pre-ordering criteria are not really 
useful for the highest cyclomatic numbers presently 
obtainable. Rather, it seems that the pre-ordering 
may be too extensive. One justification for the 
decomposed degree-tuple is that it is easy to obtain. 
Another justification will become apparent in the 
application of the canonical matrix ordering relation. 

In the definition of the decomposed degree-tuple, 
only vertex numberings were allowed which did 
not alter the degree-tuple. Now, to define the canon­
ical matrix of a star type let us allow only vertex 
numberings which do not alter the decomposed 
degree-tuple. For example, the only matrices to be 
considered in the case of the star type 61 (c = 5) 
shown in Fig 1 are those with the two vertices of 
degree four labeled 1 and 2, the two vertices of 
degree three with the incident double edge labeled 
3 and 4, and the other two vertices of degree three 
labeled 5 and 6. Of these eight possible matrices, the 
one which precedes the others according to the order 
relation for matrices introduced in Sec. I is called 
the canonical matrix. As shown in Sec. I the canon­
ical matrices for the star types with the same de-

composed degree-tuple can now be completely 
ordered. 

The advantage of using the decomposed degree­
tuple restriction on the vertex numbering is now 
obvious. In the example considered, only eight ma­
trices need be considered to determine the canonical 
matrix, whereas with no restrictions 720 matrices 
must be considered. Thus, the pre-ordering criteria 
involving the degree-tuple and the decomposed de­
gree-tuple facilitate the actual use of the canonical 
matrix for the final ordering. 

Now, it may be shown how one can often write 
down the canonical matrix of a star type in an easier 
way than actually constructing all the permissible 
matrices. Consider again the star type shown in 
Fig. 1. The alZ element in the canonical matrix 
must be equal to 2. To make ala = 1 fixes the num­
bering of the first four vertices. Of the last two ver­
tices only one is connected to the first vertex and this 
must be labeled 5 in order to make a l5 = 1. Once 
the canonical vertex numbering has been obtained, 
the canonical matrix follows automatically. This 
rather simple example is fairly typical of most of 
the star types for c :s; 5. The most difficult cases are 
the star types with all single edges and all vertices 
of the same degree. For example, consider star type 
115 in Heap's list for c = 5.11 Although there are no 
double edges, there are triangles. Clearly, vertices 
1, 2, and 3 must occupy one of the triangles for 
a l2 = al3 = a 23 = 1. Using the symmetry of the 
graph, we see that there are only two ways to do 
this. The discriminating matrix element is a45 which 
is 1 in one case and ° in the other. The rest of the 
vertices can then be numbered easily. As another 
example, star type 117 can be given the canonical 
vertex numbering immediately when the symmetry 
is noticed. 

Although the list of star types for c :s; 5 given by 
Heapll does not show the degree-tuples or the de­
composed degree-tuples, it does show the canonical 
vertex numbering of each star type which is more 
difficult to supply. To use this list for identifying a 
star type it is not really essential to have all the 
canonical matrices written down, since for c :s; 5 
there are so few star types with the same decomposed 
degree-tuple and for most of these the first line or 
two of the canonical matrix suffices for identification. 

To identify a graph using a computer is concep­
tually simple even without the use of the canonical 
matrix. One simply compares the matrices associated 
with each of the v! vertex numberings with the 
matrices in the list until one agrees. However, if 
one first permutes the vertices to find the canonical 
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matrix and then compares it to the list of M canon­
ical matrices, the maximum number of comparisons 
is reduced from M(v!) to (M + v!). Even so, the 
computer time involved becomes noticeable for v = 8 
which is also when the manual method becomes 
difficult. ll An interesting alternative has been dis­
cussed by M. E. Fisher.l4 The idea is to compare the 
diagonal elements, (A") ii, of successive powers of 
the matrices associated with the star types, which 
amounts to comparing the eigenvalues of the ma­
trices. Unfortunately, there exist pairs of different 
graphs which have the same eigenvalues, so this 
is not a conclusive test. However, the smallest known 
pair of star types with the same eigenvalues has 
c = 19 and v = 9.14 If this could be proved, one would 
have a valid test for the cyclomatic orders of im­
mediate interest. However, even if the "ultimate 
arbitrariness" could be disregarded, the ordering 
scheme based on the canonical matrix seems pref­
erable to one based on the diagonal elements of suc­
cessive powers because it is easier to use manually. 
Still, it is pleasant to find that the first disagreement 
between the two orderings does not occur until one 
considers star types 42 and 43 in c = 5. 

Finally, it may be mentioned that the canonical 
matrix is useful for obtaining star types with a 
given decomposed degree-tuple. One constructs a 
matrix row by row using, for each element, the 

14 M. E. Fisher, J. Comb. Theory I, 105 (1966). 

largest number which does not violate the restric­
tions imposed by the decomposed degree-tuple and 
such that the matrix is canonical. If such a matrix 
can be found, one records it, locates the last matrix 
element where a choice could be made, diminishes 
that element by one, and attempts to complete the 
matrix subject to the above restrictions, and so on. 
A list of stars obtained manually in a trial of the 
method was correct for c = 4 and c = 5 except for 
the last and hardest degree-tuple, (3, 3, 3, 3, 3, 
3, 3, 3), as was disclosed by Heap's computer enumer­
ation.ll 

SUMMARY 

It has been shown that it is possible to completely 
order undirected graphs systematically while still 
retaining the natural subdivisions useful for partic­
ular problems. In the case of the star types, a partic­
ular ordering, based on a sequence of natural sub­
divisions followed by the canonical matrix ordering, 
and the accompanying identification procedure have 
been presented. 
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The discontinuity across the normal threshold in a subenergy variable is evaluated by S-matrix 
methods. The effect on the discontinuity of continuing past higher Landau singularities is discussed. 

1. INTRODUCTION 

SEVERAL authors! have discovered that the 
structure of the normal thresholds in the sub­

energy variables of multiparticle amplitudes is com­
plicated. Here we give a derivation of the discon­
tinuities corresponding to these singularities and 
investigate how their form is affected by the presence 
of "higher" singularities. 

Our method, which is independent of perturbation 
theory, other approximate models, crossing, and any 
"unphysical unitarity relations," is similar to that 
previously used2

•
3

•
4 for the derivation of the discon­

tinuities corresponding to certain other singularities. 
It involves consideration of the physical unitarity 
equations E! and E2 operating to either side of the 
singularity under study. The equation El is con­
tinued analytically into the region where E2 operates, 
so that now in the latter region there are two different 
equations. After some manipulation, these yield the 
desired discontinuity. This is discussed in Sec. 2. 

The result involves a simple integration, but it is 
applicable only for values of the sub energy suffi­
ciently near to the normal threshold under study. 
When it is continued away from the threshold and 
across the singularity curves corresponding to higher 
Landau-Cutkosky diagrams, the integration con­
tours become distorted. This is discussed in Sec. 3. 
An elementary knowledge of some of the properties of 
Landau curves provides a simple technique for 
determining the nature of the distortion for a given 

* The research reported in this document has been spon­
Bored in part by the Air Force Office of Scientific Research, 
OAR, under Grant AF EOAR 63-79 with the European 
Office of Aerospace Research, United States Air Force. 

I For example, V. Anisovich, A. Ansel'm, and V. Gribov, 
Zh. Eksperim. i Teor. Fiz. 42, 224 (1962) [English trans!': 
Soviet Phys.-JETP 15, 159 (1962»); N. Bonnevay, Nuovo 
Cimento 30, 1325 (1963); J. Bronzan and C. Kacser, Phys. 
Rev. 132, 2703 (1963); R. Hwa, ibid. 134, BI086 (1964). We 
are grateful to Dr. I. J. R. Aitchison for a discussion of these 
papers. 

I D. 1. Olive, Nuovo Cimento 29, 326 (1963). 
a P. V. Landshoff and D. 1. Olive, J. Math. Phys. 7, 1464 

(1966). 
4 R. J. Eden, P. V. Landshoff, D.1. Olive, and J. C. Polking­

horne, The Analytic S-Matrix (Cambridge University Press, 
Cambridge, England, 1966). 

continuation. This technique is described in an 
Appendix. 

2. DERIVATION OF THE DISCONTINUITY 

Consider a theory in which there are two types 
of particles. One, of mass m, is denoted by a straight 
line; the other, of mass M, is denoted by a wavy 
line. Neither has any intrinsic quantum numbers, 
and the masses are chosen such that both particles 
are stable: 

m < M < 2m. 

We evaluate the discontinuity associated with the 
normal threshold (J' = (m + M)2 in the sub energy 
variable (J' = (PI + P2)2 of the amplitude of Fig. l. 

--f'r- P. FIG. 1. The amplitude 
~ ~ under discussion. 

For (J' just less than (m + M)2, and suitable 
values of the other variables, the unitarity equation 
for this amplitude reads6 

::(±E - =EE • :@:EE + ~ 

+ ;:(f)XEE.+ ::@33: + ~ 

+~+=<tEe:+~ 

+ .:::@=E?= . (1) 

For (J' just greater than (m + M)2, an extra term 

(2) 

must be added to the right-hand side. Here, as 
usual/ the labels (+) and (-), respectively, refer 
to the physical amplitude and its Hermitian con­
jugate. As far as the variable ". is concerned, the 
corresponding limits onto the normal-threshold 
cuts are shown in Fig. 2. 

6 An explanation of the diagrammatic notation is found in 
Ref. 4 or in D. 1. Olive, Phys. Rev. 135, B745 (1964). 
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(+) 

(-) 

FIG. 2. The com­
plex <T plane. The 
labels ( + ) and ( - ), 
respectively, de­
note the physical 
and Hermitian-con­
jugate boundary 
values. 

We now continue the whole Eq. (1) analytically 
in the variable (J', starting at a real value less than 
(m+MY, passing below the branch point at (m+M)2 
to a real value greater than (m + M)2. We see from 
Fig. 2 that this continuation passes to the correct 
side of the branch point for preserving the label 
(-) on those (-) amplitudes in (1) that have (J' 

as an external variable, that is, in all the terms 
except the first on the left-hand side and the seventh 
and eighth on the right-hand side. However, for 
those amplitudes that are labeled with a (+) and 
have (J' as an external variable, namely, in the first 
term on the left-hand side and the last term on 
the right-hand side, the continuation is "unnatural" 
in the sense that it goes into the region labeled 
(i) in Fig. 2. So we write 

=€E-::(D= 

-~ ~. (3) 

The normal threshold singularity in question 
appears in (1) not only because of its presence in 
the bubbles, but also because it can be generated 
by the integrations in the terms on the right-hand 
side. We know4

•
6 that the singularities of unitarity 

integrals are generated in an analogous way to those 
of Feynman integrals. They can be represented by 
Landau-Cutkosky diagrams and they lie on the 
corresponding Landau curves. The singularity at 

:::CtEZ 
ee) 

FIG. 3. Mechanisms of 
generation of the normal­
threshold singularity <T = 
(m + M)2 in the various 
terms of the unitarity 
equation (1). 

e J. C. Polkinghorne, Nuovo Cimento 23, 360 (1962); 
ibid. 25, 901 (1962). 

(J' = (m + M)2 can occur in the fourth term of 
the right-hand side; the singularity here is generated 
by one of the particles m in the intermediate state 
together with the single-particle pole M in the right­
hand bubble, the other two particles in the inter­
mediate state corresponding to a loop which is 
contracted out [see Fig. 3(a)]. The singularity can 
also occur in the fifth and sixth terms [see Figs. 3(b), 
3(c)]; in each of these two figures it occurs in two 
ways. It is only necessary to consider the singularity 
at (J' = (m + M)2, since we wish to evaluate the 
discontinuity across this singularity alone and to 
make our continuation within a small nearby region 
through which no other Landau curves pass. 

The occurrence of the normal-threshold singularity 
in this way means that, when we continue (1) across 
(J' = (m + M?, the contours of integration might 
be distorted from their normal arrangement in the 
physical unitarity integral. This would mean that 
terms in the continued unitarity relations and in 
the physical unitarity integral, which corresponded 
to the same bubble picture, would in fact relate to 
integrals with different contours of integration. If 
this happens, the continuation is called "unnatural" 
and the difference between the integrals with the 
different integration contours must be evaluated in 
calculating the discontinuity. If this does not happen, 
the continuation is said to be "natural." 

We show in the Appendix that the continuation 
we have chosen is in fact natural in all three of 
these cases. So, in this continuation of (1) into 
(J' > (m + M)2, the only changes that must be 
made are those shown in (3). If, therefore, we sub­
tract the continued equation from the physical 
unitarity equation that operates in this region, 
namely (1) with the extra term (2), we have 

=<±E - =GE ,. ~ - ::Q=6= 

+:::e==e= 
Rearrangement gives 

(4a) 

(4b) 

The first factor on the left is the discontinuity 
we seek, so the problem now is to find the inverse 
of the second factor. To this end, consider a unitarity 
equation for the amplitude m + m -? m + m: 

=®= - =e= :1\\ =®=e= :1\\ =0=@::. (5) 

This equation operates to the left of the normal 
threshold (J' = (m + M)2, where (J' is now the total-
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energy variable for this amplitude. If we continue 
analytically to the right of this threshold, passing 
below it in the complex plane as before, we obtain 

=:@:: - =e= :: =@::E)=:::::G=@:: (6) 

for 0' > (rn + MY. Hence "postmultiplication" 
of (4b) by 

+ :::::@::: 

gives 

FIG. 5. Vector 
diagram associated 
with Fig. 4. 

G 

E 

performed, the range of integration of 0" is 

F 

"'=e=(~+~). (7) u'- ~ 0" ~ u~, 

But the analog of (6) for the amplitude rn + M ~ 
m + mis 

~-~;;:~ ... ~. 
(8) 

Hence, (7) reduces to 

(9) 

3. DISCUSSION 

The result (9) is the discontinuity we have been 
seeking and we now examine just when it is valid. 
First, notice that (1) only applies for a certain range 
of values of the variables other than o'. For other 
ranges, more or fewer terms will be present but this 
will actually not affect the final result (9), b:cause the 
only terms that mattered in the derivation were 
those in (3). This is so if (f is sufficiently close to 
the threshold (m + M)2. We now consider what 
happens if it is not. 

Since the term (2) occurs in a physical unitarity 
relation, the integration implied is over all physical 
values of the internal momenta. The integration 
is two dimensional and we can choose, as one of the 
~ntegration variables, the subenergy 0" = (ql + Pa? 
III terms of the numbering of Fig. 4. If the integration 
over the second variable, whatever it is, is supposed 

FIG. 4. The la­
beling of momenta 
as used in Sec. 3 for 
the discussion of 
the integration in 
the term on the 
right-hand side of 
(9). 

where the end points o'!. and u ~ are found by con­
sidering the vector diagram, Fig. 5, in which H is 
not necessarily coplanar with EFG. In this diagram, 
lines EF, EG, GF, EH, and HF correspond to the 
vectors (Pl + P2), (Pl + P2 + Pa), Pa, ql, and q2, 
respectively with corresponding specified lengths O't, 
st, rn, rn, and M [where 8 = (Pl + P2 + Pa)2 is 
the total-energy variable}. The way they form 
triangles in Fig. 5 corresponds to the linear relations 
between the vectors resulting from their definitions 
and from the conservation law Pl + P2 - ql - q2 = O. 
For example, the latter finds expression in the fact 
that EF, FG, and GE form a closed loop. Now, 
the triangle EFG is fixed while the point H is forced 
to move in a circle with EF as axis. Since the length 
of GH gives the possible values of O',t in the integra­
tion region, the extreme values obviously occur when 
H lies in the plane of the triangle EFG. 

If, instead, we take 0''' = (Pa + q2)2 as residual 
integration variable, the integration range can be 
found similarly. 

Since it is the term (2) that results in the term 
on the right-hand side of (9), the integration in the 
latter will be exactly similar. We have been con­
sidering 0' not too much greater than (rn + M)2 
but if it is increased, complications arise from 0' l 
or O'! passing through a value that coincides with a 
normal threshold of the left-hand bubble in the 
variable 0". 

If, in particular, 0' ~ coincides with the threshold 
0" = 4M2

, the external variables 0' and 8 lie on 
the Landau curve corresponding to the first triangle 
diagram in Fig. 3(c), since it is known that the 
curve corresponds to this geometrical configuration 
which in this case is called a "dual diagram." Th; 
part Ll of this Landau curve lying in the physical 
region is the arc of a hyperbola drawn in solid line 
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,-
/ 

/ 

/ 

I 
I 

I 

FIG. 6. The real (8, u) plane. The straight lines are normal 
thresholds the solid curve is an arc of the Landau curve Ll 
corresponding to the first triangle diagram in Fig. 3Cc), and 
the dotted curve is the "second-type" curve. 

in Fig. 6. We expect the integrals considered to be 
singular all along L 1, since it is generated by an 
end-point mechanism. 

We conclude that, in the regions U and V close 
to the (J = (m + M)2 normal threshold, the (J' 

integration in (9) takes the straightforward arrange­
ments shown in Figs. 7(a) and 7(b), whereas if we 
pass from regions U or V across the triangle curve 
Ll into W, the contour must depend upon the route 
we take around Ll in complex (8, (J) space. 

Consider, in particular, possible routes from U 
to W. Since the piece of singular curve Ll we have 
to cross has negative gradient, the plane normal 
to it in complex (s, (J) space lies in 

..... 'INa 
• ~ 

(al 

.,.: 
)1 • 
(b) 

ee) 

,. .crt 

(eI) 

)( 

(el 

.,..i-
e • 

FIG. 7. The u' 
integration contour 
for continuations a­
cross Ll into var­
ious regions of Fig. 
6. 

1m slIm (J > O. 

So we may avoid the singularity either by a distor­
tion 1m s, 1m (J > 0 or by a distortion 1m s, 1m (J < O. 
By the methods of the Appendix, we see that in the 
former case (J: passes to the upper side of the 4M2 
branch point, thus giving the contour of Fig. 7(c), 
while in the latter case it passes to the lower side 
giving the contour of Fig. 7(d). Part of the latter 
contour lies in the unphysical limit between the 
cuts attached to the branch points (J' 4M2

, 

(J' = (m + M)2. 
Suppose we take the first route from U to W 

and now across into region V. This time we may 
cross the arc of Ll using either of the distortions 

Ims> 0, 

Ims < 0, 

1m (J < 0, 

1m (J > O. 

The techniques of the Appendix tell us that in the 
first case (J!. passes above the 4M2 branch point and 
in the second it passes below, thus leading, respec­
tively, to Figs. 7(b) and 7(e). 

Now, the derivation of Sec. 2 is valid for region V 
and leads to Fig. 7(b). We can understand why 
only one of the continuations from U to V via W 
leads to this result by considering a path J J' (lying 
in the (J plane of the amplitude and running from 
a point J in the physical limit) round the (J = 
(m + M/ normal threshold and returning directly 
back to J'. Initially, J and J' lie in the region U 
(Fig. 6) and the difference between the amplitude 
evaluated at the two points is the normal-threshold 
discontinuity of interest. 

As we increase s, J and J' cross Ll twice and are 
given positive or negative imaginary parts in (J in 
accordance with the previous discussion. As J and 
J' move into Wand finally into V, we have the 
sequence of pictures illustrated in Fig. 8. In drawing 
these pictures, we have assumed that in the ampli­
tude it is only the part of L 1 , separating region U 
from region W, which is singular in the physical limit 
(this was proved in Ref. 3). Corresponding to the 
continuations of the discontinuity integral leading 
to Figs. 7(b) and 7(e), we have sequences 8(a) and 

u 

FIG. 8. The complex,!" plane for variou.s values of. 8, showing 
how different contmuatlOns from the reglOn U of Fig. 6 across 
Ll into W yield different discontinuities. 
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8(b) in Fig. 8. Sequence 8(a) does indeed lead to 
the discontinuity of interest in region V, whereas 
the discontinuity obtained in sequence 8(b) involves 
the Ll cut. 

It is not only Ll that can distort the integration 
over the sub energy u'. The Landau singularity L2 
corresponding to the second diagram of Fig. 3(b) 
plays a part. This Landau curve is a degenerate 
hyperbola (a pair of coincident straight lines) and 
can be considered as a limiting case of a curve like 
Ll as the external mass varies (in S-matrix theory, 
this is achieved by adding more externallinesu .

6
). 

In the limit the points A, B, and P of Fig. 12 coincide 
at the intersection of the normal thresholds, and 
the regions U and X disappear. The authors in 
Ref. 1 have shown that the total discontinuity 
across L2 is zero (so that it is nonsingular) and that 
crossing it wraps the u' contour around the (m + MY 
normal threshold as in Figs. 9(a) or 9(b). 

We show this by demonstrating the corresponding 
properties of Ll which reduce to this in the de­
generate limit. 

Let us consider the four possible ways of con­
tinuing the integral from region V through region 
W to region Y (see Fig. 6). According to the methods 
of the Appendix, the final contours are as shown 
in Fig. 9. 

The final contours in cases (c) and (d) are the 
same so that two different paths on the Riemann 
surface of the integral lead to the same point, 
whatever the nature of the u' branch point. Actually 
this branch point, being a two-particle threshold, 
is two sheeted, and so in this case the contours 
resulting in cases (a) and (b), while looking different, 
are actually equivalent because the difference be­
tween them is a contour encircling the two-sheeted 
branch point twice. Then the sum of the u discon­
tinuities across the two branches of Ll is zero. 

I t is also found that each branch of LI is itself 
two sheeted (as will be shown in a subsequent paper) 
and that similar arguments apply to continuations 
from U to W to X. 

We have been discussing the subenergy u' in some 
detail, but similar effects are encountered in the 
integration over the sub energy u" = (Pa + q2)2 
and involve the other Landau diagrams of Figs. 
3(b) and 3(c). [The Landau diagram of Fig. 3(a) 
has not been mentioned, because the corresponding 
singularity curve does not enter the physical region.] 
Also, the triangle Landau singularities, correspond­
ing to the subenergy integration and being distorted 
by a normal-threshold singularity, are not the only 
ones to be involved. A complete discussion would also 

vw WY 
fined. 

I 

inY 
i.ntJcKa "'t&.r-.e. 

fT~ 

a. ImfT)O ImenO ' ... \ )( / .. • 
... ,., 

b <0 <0 Q4. • • 

C >0 <0 • - • >t 

d • .. • <0 >0 >t 

FIG. 9. Integration contours for various continuations from 
region V of Fig. 6 into Y. 

have to consider higher singularities, corresponding 
to the integration being entangled with other sin­
gularities of the bubbles in the integral. 

In conclusion, we mention that our analysis has 
concerned the (m + M) normal threshold, which is 
a normal threshold inside the physical region for 
the amplitude we were considering. This is so that 
we could use physical unitarity relations to either 
side of the threshold. But we expect that very 
similar results hold for the (m + m) normal thres­
hold, which is on the boundary of the physical 
region. An analogous proof would require the un­
physical unitarity relation7 operating to the un­
physical side of the threshold. 

APPENDIX 

We now explain a technique for deciding how an 
integration end point passes a singularity of the 
integral. We saw that the end points of the u' 
integration were determined in terms of the external 
variables 8 and 0' by Fig. 5, which could be thought 
of as a dual diagram corresponding to a Feynman 
diagram with variable internal mass u'. Since the 
dual diagram is equivalent to the Landau equations, 
our problem reduces to understanding the behavior 
of the Landau curve as an internal mass varies. 

The argument to be presented is capable of 
general application but we just consider4

•
8 the 

Feynman graph of Fig. 10, with internal masses 
ml, m2, and ma, and external masses m23. mall and 

• 7 Unp~ysical unita~ity relations, and their proof, are 
dIScussed III Ref. 4 and III the paper by Olive mentioned under 
Ref.5. 

• 8 M. Fowler, P. V. Landshoff, and R. W. Lardner Nuovo 
Clmento .17, 956 (19.60) .. There is a printer's erro; in this 
paper; . FIg. l(b), which IS relevant here, should be rotated 
clockWise through 90°. 
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FIG. 10. A Feyn­
man graph dis­
cussed In the 
Appendix. 

m12' The equation of the leading Landau singularity 
of this graph (with all internal lines on the mass 
shell) can be obtained from the function 

D = 2: a.ajm~j - C 2: a.m~, (AI) 

where 

C = al + a2 + as, 

by eliminating the parameters a by means of the 
equations 

aDjaa; = 0, i = 1,2,3. (A2) 

Since D is homogeneous in the a, it is evident that 
(A2) implies D = O. 

Suppose now that a set of the m's is chosen, 
corresponding to a point on the leading singularity, 
and the corresponding values of the a's are found. 
If now a small variation is made in the m's, D will 
change according to 

dD = L a(~j) d(m~j) + L a~~:) d(m~) 
aD + 2:-a da;. 
a. 

So the variation will correspond to remaining on the 
singularity if 

o = L a.aj d(m~j) - C L a; d(m:). (A3) 

The Feynman graph with Fig. 5 as a dual diagram 
is shown in Fig. 11. The dotted line carries mass 
vi u'. Comparing with Fig. 10 we identify 

m~ = u' (A4) 

Fig. 11. The 
Feynman graph 
having Fig. 5 as 
dual diagram. 

We have said in Sec. 3 that, when one of the 
end points coincides with u' = 4M2

, we have the 
Landau singularity corresponding to the first dia­
gram in Fig. 3(c), drawn as the curve Ll in Fig. 6. 
So, if we take a small detour (ds, du) around Lip 
we see from (A3), with the identification (A4), that 
the displacement du' of the end point from 4M2 is 
given by 

o = ala2 du + alaa ds - Cas du'. 

Hence, to decide whether du' goes above or below 
4M2 for a given sign of 1m du, 1m ds we merely 
need to know the signs of the a's and of C. The real 
motion is likewise determined. 

The signs of the a'S are easily discovered8
•
4 and 

are shown in Fig. 12. This figure shows the leading 
curve for the general Feynman graph of Fig. 10, 
drawn in the real (m~3' m~2) plane with m23 fixed 
at a value satisfying 

(A5) 

[since, using (A4), we are interested in 2M > 
m + M.] The straight lines in this diagram are 
the normal thresholds m~a = (m l + ma)2, m~2 = 
(m l + m2)2. It is known that, at the contacts A and 
B with these normal thresholds, the signs of the a's 
are, respectively, (+0+) and (+ +0); continuity 
then gives the signs on the other parts of the curve. 
The point P denotes the contact of the curve with 
the "second type" curve9 

~ 

m,zLm2. 

1!1 

FIG. 12. The signs of the a's for various parts of an ~rc of 
Landau curve corresponding to the Feynman graph of Fl~. 10. 
11123 is fixed at a value satisfying (A5). The dotted curve 18 the 
"second-type" curve. 

t D. B. Fairlie, P. V. Landshoff, J. Nuttall, and J. C. 
Polkinghorne, J. Math. Phys. 3, 594 (1962). 
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[By (A4) this becomes 

sl = u t + M. 

This parabola also bounds the physical region in 
s and u and appears in Fig. 6 as a dotted line.] 

P is the point at which C vanishes; on the arc 
P AB IX> C is positive; on IX> P, negative. 

In Sec. 3 we also discussed the curve L 2 , cor­
responding to the second diagram of Fig. 3(b). This 
is an example of a degenerate Landau curve; the 
inequality (A5) is replaced by an equality. The 
points P, A, B, of Fig. 12 all coincide at 0 and the 
arcs IX> P, B IX> coincide. Hence, to discover what 
happens when we take a detour (ds, du) around L 2 , 

one just considers similar successive detours around 
the arcs IX> P, B IX> in the nondegenerate case, and 
considers what happens in the limit as m2 is reduced 
so as to give degeneracy. 

Another similar problem we may solve by these 
methods is that encountered in Sec. 2. This concerns 
the generation of the u = (m + M)2 normal thresh­
old in the fourth, fifth, and sixth terms of the 
right-hand side of (1) by a pole in the right-hand 
bubble. Consider, for definiteness, the mechanism 
indicated in Fig. 3(a) for the fourth term. Take 
as integration variables u = (PI + P2 - qI)2 and 
four other variables. Suppose the latter are integrated 
out. Then the normal threshold is generated by an 
end point of the u integration coinciding with the 
pole u = M2 of the right-hand bubble. Now, this 

Fig. 13. The 
Feynman graph 
used in the discus­
sion at the end of 
the Appendix. 

end point corresponds to the four-momentum, qi 
being parallel to (PI + P2). But this is precisely 
the same condition as that for the singularity of 
the Feynman graph of Fig. 13, in which the dotted 
line is given mass u t . The D function for this graph is 

xyu - (x + y)[xm2 + yu], 

where x, yare, respectively, the Feynman parameters 
for the lines qi and the other internal line. In the 
same way as before, a displacement of u from the 
singularity being generated corresponds to a dis­
placement du of the end point from the generating 
pole, given by 

o = xy du - (x + y)y duo 

Since x, y for a normal threshold are positive, we 
see that 1m du and 1m du take the same sign, 
which is the information needed in Sec. 2. 

We stress that, although the techniques of this 
Appendix "borrow" some results of perturbation 
theory, this is entirely a matter of algebraic con­
venience and the results of the text are quite in­
dependent of perturbation theory. 
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The Icecream-Cone Singularity in S-Matrix Theory* 

P. V. LANDSHOFF, D. 1. OLIVE, AND, J. C. POLXINGHORNlil 

Department oj Applied Mathematics and Theoretical Physics, Univer8ity of Cambridge England 
(Received 9 November 1965) , 

The icecream-cone singularity is analysed by S-xnatrix theory methods. It is found to appear only 
~ that.pa:t o~ the .physical region predicted by. finite-ord~r perturbation theory. The corresponding 
discontmUlty 18 derIved, and the nature of the smgularity 1S discussed. 

1. INTRODUCTION 

I N a previous paperl it is shown that, at least 
as far as the physical region is concerned, the 

structure of the simple triangle singularities is very 
similar to that in finite-order perturbation theory. 
It is hoped that the analysis given there is readily 
extendable to all the "simple" physical-region sin­
gularities of the S matrix, that is those whose 
Landau-Cutkosky diagram consists only of a net­
work of single lines.:! But the analysis of the non­
simple singularities appears to be more involved. 
The simplest example of such a singularity is the 
"icecream cone", for which one of the internal lines 
of the Landau-Cutkosky diagram is doubled (Fig. 1). 

The doubling of the internal line has two effects. 
First, the extraction of the discontinuity from the 
physical unitarity equations is rather more com­
plicated than for the simple triangle. Second, the 
result for the discontinuity cannot be compared with 
finite-order perturbation theory, because an infinity 
of nontrivial Feynman graphs, corresponding to 
iterations of the two-particle loop, possess the sin­
gularity as their leading singularity. This is con­
nected with the result we find below, that, unlike 
the case of the simple triangle, the expression for 
the discontinuity contains subsidiary amplitudes 
that are not all evaluated on the physical sheet. 
(A similar result can be obtained formally by sum-

FIG. 1. The ice-
cream-cone dia-
gram. 

* The research reported in this document has been spon­
sored in part by the Air Force Office of Scientific Research, 
OAR, under Grant AF EOAR 63-79 with the European 
Officie of Aerospace Research, United Stated Air Force. 

1 P. V. LandShoff and D. 1. Olive, J. Math. Phys. 7, 1464 
(1966). 

I Further cases have been discussed by M. J. W. Bloxham, 
Nuovo Cimento (to be Qublished), and a general discussion 
will be given by M. J. W. Bloxham, D. 1. Olive, and J. C. 
Polkinghorne (in preparation). 

ming an infinite number of perturbation theory 
discontinuities.) However, we do find that the Rie.­
mann sheet properties of the singularity in the 
physical region are as in finite-order perturbation 
theory: only the positive-a parts are singular. 

In writing this paper, we have assumed that 
the reader has at least some familiarity with our 
paper on the simple triangle.! In particular, we do 
not here give full details of how we calculate to 
which side of integration hypercontours singularities 
of integrands pass when analytic continuation is 
performed. These calculations may either be done 
by means of Cayley determinants! or, rather more 
simply, by using some elementary properties of the 
Feynman denominator functions for the simple 
triangle graph.s Perhaps we should add that we 
do not expect the reader to have any knowledge of 
our paper4 on the icecream cone in perturbation 
theory; the work here is quite independent of per­
turbation theory. 

In the equal-mass case, the icecream-cone sin­
gularity curve is degenerate, becoming a pair of 
coincident straight lines. So we consider a theory 
with two types of particle having the quantum 
numbers of pions and nucleons, but with the mass 
of the nucleon not much greater than that of the 
pion: 

!~ > M >~. (1) 

This choice of masses serves to reduce the number 
of terms in the unitarity relations. As is indicated 
in Fig. 1, the icecream-cone singularity considered 
here is contained in the amplitude for the process 

1r+N~1r+1r+N (2) 

and involves an internal nucleon-antinucleon closed 
loop. The labels 8 and CT in the figure denote the 

3 P. V. Landshoff, D. 1. Olive, and J. C. Polkinghorne 
J. Math. Phys. 7 1593 (1966). ' 

• P. v.. Landshoff, D. I. Olive, and J. C. Polkinghorne, 
Nuovo Clmento 43, 444 (1966). 

1600 
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total-energy variable and the relevant final-state 
subenergy. 

2. METHOD OF ANALYSIS 

In the range (3M)2 ~ 8 < (3M + p.)2 of the 
total energy, the unitarity equation for the process 
(2) reads 

--f.i:\"-:": _ --ct':::: _ --C\-+.(""r----+-~+---­
~~-~~.=~ 

+~+~=. (3) 

(The third and last terms on the right-hand side 
each contain an antinucleon in the intermediate 
state.) The form (3) of the unitarity equation enables 
us to derive the discontinuity of the physical 
amplitude 

(4a) 

corresponding to the icecream-cone singularity L. 
There is another form of the unitarity equation in 
which the labels (+) and (-) on the right-h~nd 
side of (3) are interchanged. With this one could 
obtain, by exactly similar methods, the correspond­
ing discontinuity of the Hermitian-conjugate 
amplitude 

--t::'t::: 
--0=-= (4b) 

The unitarity equation (3) is valid on either side 
of L, but is not an analytic continuation of itself 
across L, because of the presence of the singularity 
L in the various terms. The singularity L may be 
found in a term on the right-hand side for either 
of two reasons (or both): it is generated by the 
presence of lower singularities within the bubbles . . ' 
or It IS regenerated by the presence of L itself within 
a bubble. The generation mechanisms are tabulated 

-W(O=O"OJ 
~-KE(~) 

(c) 

- b)(=O:'-oj 
(~) 

FIG. 2. Generation 
mechanisms. 

FIG. 3. Regeneration 
mechanisms. 

=oo-:-b*~ ,.) 

~) (O-X-o:~~n) 
=:CEa:-:... (o.V-r-dI:- ) 

«).~ 

~~, ((:eOX:u.=) 

in Fig. 2 and the regeneration mechanisms in Fig. 3. 
They are explained more fully below. 

The singularity curve L is the same as the leading 
singularity for the Feynman graph of Fig. 4. The 
part lying in the physical region for the process (2) 
is drawn in the real (8, IT) plane in Fig. 5. In this 
figure we have labeled, for the various arcs of L, 
the signs of the Feynman parameters al, a2, as cor­
responding to the internal lines of Fig. 4. The point 

FIG. 4. The equivalent triangle 
diagram. 

X is the contact of L with the second-type singularity 
curve (which is singular on unphysical sheets6

) at 
which the quantity C = al + a2 + aa changes 
sign; on the arc coX, C is negative, on XABco it is 
positive. This information is relevant for the simple 
methodS of determining how singularities of in­
tegrands lie with respect to boundaries of integration 
regions. 

Our procedure is to continue (3) analytically from 
outside L to inside L, and compare the result with 
the (different) Eq. (3) operating inside L. For any 
of the mechanisms in Figs. 2 and 3 for producing 

l+-+) 

L 

FIG. 5. The 
Landau curve m 
the physical region. 

5 p. B. Fairlie, P. V. Landshoff, J. Nuttall and J. C 
Polkmghorne, J. Math. Phys. 3, 594 (1962).' . 
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the singularity L in the terms of (3), there is a 
natural continuationl across L in the sense that it 
is this route around L in complex (s, IT) space which 
preserves the form of the term. Other continuations 
lead to distortions of the integration contour so that 
the continued term differs from the corresponding 
term in the unitarity equation on the other side 
of L by a discontinuity which must be calculated. 
(In this paper, we adhere to the convention that 
internal lines in bubble diagrams correspond to 
momenta integrated over physical values.) The 
natural continuations are not the same for each of 
the mechanisms, which is why Eq. (3) as a whole 
is not an analytic continuation of itself across L. 

We do not want to have to bring in the icecream­
cone singularity of the amplitudes for the_processes 
7r + 7r + N --+ 7r + 7r + Nand N + N + N --+ 

7r + 7r + N if we can avoid it. We therefore choose 
to make that continuation which is natural as far 
as the regeneration mechanisms of Figs. 3 (b) and 
3(c) [and so also Fig. 3(a)] are concerned. If 'TJ is 
the variable that measures distance along the inward 
normal to L at any point of L, its explicit definition 
being that displacements (ds, dlT) from L along the 
normal are given by 

ds = al d7], dlT = a2 d7], (5) 

the required continuation isl
•
6 the one that avoids 

L by a route in 1m 'TJ < O. 
We now have to determine what is the effect of 

this continuation on the various generation mech­
anisms of Fig. 2. 

S~~--____ -L 

(b) 

FIG. 6. Momenta for 
the mechanism of Figs. 
2(a) and 2(c). 

R 

T 

GR. J. Eden, P. V. Landshoff, D. I. O~ive, an~ J .. C. 
Polkinghome, The Analytic S-Matrix (Cambndge Umverslty 
Press, Cambridge, England 1966). 

3. GENERATION MECHANISMS 

We show that the continuation via 1m 7] < 0 
is natural for all the mechanisms in Fig. 2, with 
the following exceptions: Fig. 2(b) on the arc XA, 
Fig. (2d) on the arc XA, Fig. 2(e) on the arcs XA 
and AB. We also discover how these exceptions 
differ from the natural continuation, which for these 
would be via 1m 'TJ > O. That is, we evaluate the 
discontinuities across L produced on these arcs by 
these mechanisms. 

Figures 2(a) and 2(c) 

Here the icecream-cone singularity L is generated 
by the presence of a simple triangle singularity L' 
in the right-hand bubble. L' can only generate L 
when L' itself is singular, and we already know I 
that this demands that the a-parameters for L' all 
be positive. This means, as we now show, that the 
mechanism produces a singularity only on the arc 
AB of L. 

The relevant four-vector diagram is drawn in 
Fig. 6(b), with the momenta labeled as in Fig. 6(a). 
The critical configuration yielding L' is the co­
planarity of q4, Q5, Q6' The corresponding a's, which 
will be distinguished by primes from those pre­
viously introduced for L, are the coefficients mul­
tiplying the three vectors -q4, -Q5, -q6 radiating 
out from 0 in the linear relation among the vectors 
that expresses the fact of their coplanarity. The 
condition that the cl be positive is that 0 lie inside 
the triangle QST. In the critical configuration yielding 
L there is the additional restriction that Q], Q4 be , 
parallel, that is RQO is a straight line. The cor­
responding a are the coefficients multiplying the 
vectors OR, OS, OT in the vanishing linear combina­
tion of these vectors, and they are positive if 0 
lies inside the triangle RST. But it is evident that 
this is the case if and only if 0 lies inside QST, 
so the two sets a, a' are positive or not positive 
together. 

Hence on the arcs co X, XA, and B co of L, either 
continuation 1m 'TJ ~ 0 is natural since the singu­
larity is, in fact, absent. It remains to show that 
1m 7] < 0 is natural on AB. Suppose that the 
integration variables are taken as 

and two others that have been integrated out. The 
icecream-cone singularity arises when the boundary 
B('Y, w; s, IT) = 0 of the ('Y, w) integration touches 
the simple triangle singularity L'('Y, Wj IT) = O. The 
boundary B corresponds to the four-vectors PI, ql 
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and (PI + P2) being coplanar, that is, the points 
QRST in Fig. 6(b) lying in a plane. This condition 
we may express3 by introducing a function D" and 
parameters a:', a~', a~' which are the coefficients 
of the vectors QR, QS, QT in their vanishing linear 
combination: 

- (af' + a~' + a~')(af'q~ + a~''Y + a~'w), 
and solving 

D" = aD" jaaf' = aD" jaa~' = aD" /aa~' = O. (6) 

The equivalence between these equations and the 
geometrical condition for the boundary is simply 
the equivalence between the Landau equations and 
the dual diagram construction for their solution.6 

The equation of L', which corresponds to OQST 
being coplanar, may be obtained similarly; we have 
already introduced the parameters af, a~, a~ for the 
vectors OQ, OS, OT, and we know that the latter 
have to be positive in the critical situation in which 
L is generated (OQR col1inear). By inspection7 of 
Fig. 6(b), in this case the a" are also positive. If 
we make a variation of 'Y, w on B, keeping the 
other variables fixed and using (6), we see that 

o = dD" = -(a~' + a~' + a~')(a~' d'Y + a~' dw), 

and so 

fl'Y/aw = -a~'/a~'. 

Similarly, we may calculate that on L' 

a'Y/aw = -a~/a', 

and so the touching of Band L' requires that 

at the contact. As we have said, the point (s, u) 
is then on L. If we make a small displacement 
(ds, du) away from L we find using (6) that B moves 
according to 

o = ara~' du + a~'a:' ds 

- (af' + a~' + a~')(a~' d'Y + a~' dw). 

If the displacement takes the form (5), with al 
and a2 both positive (since we are considering the 
arc AB of L), and if 1m dTf < 0, we see that B 
moves such that 

1m (a~' d'Y + a~' dw) < O. 

7 Actually, Fig. 6(b) is not Euclidean, but topological 
notions of "inside" and "outside" are not affected by this 
complication. 

Similarly, we may calculate that L' moves such that 

1m (a~ d'Y + a~ dw) > O. 

Thus, in the plane in complex (-y, w) space normal 
to the critical contact between Band L', we have 
found that the edge B of the integration region 
passes below the singularity L' of the right-hand 
bubble. Since the latter carries the label (-), this 
is therefore a natural continuation. 

Figure 2(b) 

Label the momenta as in Fig. 7 and take the 
integration variables as l = (ql + q2)2, u = 
(ql + qz - PI)2, and others which are supposed 
already to be integrated out. The icecream-cone 
singularity L arises from the boundary B' of the 
(l, u) integration passing through the intersection 
of the pole u = l of the right-hand bubble and the 
normal threshold l = 4M2 of either bubble. In the 
complex l plane the integration contour passes 
between these two normal thresholds, since the 
bubbles carry labels of opposite sign. This means 
that it is "anchored" to the point l = 4M2 and 
cannot be distorted upwards or downwards in the 
l plane. To determine whether or not the continua­
tion 1m dTf < 0 is natural, we must see whether, 
for l = 4M2

, the edge B' of the u integration passes 
above or below the pole u = J.L2 in the complex 
u plane. Our standard methodsl

•
3 show that, except 

on the arc XA, it passes below, so that the continua­
tion is natural. 

On the arc XA we must determine how our con­
tinuation differs from the natural continuation. 
Since the continuation from dTf < 0 to > 0 via 
1m dTf > 0 is the natural continuation, the re­
quired difference is just the negative of the dis­
continuity corresponding to an antic10ckwise circuit 
in the complex Tf plane from the natural configuration 
at 1] = 0+. To find this, consider the integral as 
successive u- and then l-integrations. The pole u = J.L2 

produces an end-point singularity S in the u-integra­
tion. The singularity L arises in the l-integration 
from S pinching one of the normal thresholds 
l = 4M2. Standard methods1

•
3 again show that, 

on the arc XA, S is above the contour in the l 
plane for 1m Tf > 0, so that it is the branch point 
l = 4M2 below the contour that participates in the 
pinch, namely that of the left-hand bubble with 

FIG. 7. Momenta 
for the mechanism 
of Fig. 2(b). 

---Po 
/----..:--........ ~/---r. 
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the label (+) [Fig. 8(a)]. AB we make our anti-

.. 
)( 

(b) 

FIG. 8. The distortion 
of the l-contour on en­
circling the singularity. 

clockwise circuit in the 'T/ plane, S encircles the 
branch point l = 4M2 in an anticlockwise sense, 
dragging the integration contour underneath the 
4M2 cut [Fig. 8(b)]. The resulting discontinuity is 
an integral of the 4M2-cut discontinuity of the S-cut 
discontinuity.s The latter discontinuity is the residue 
of the integrand at the u = p.2 pole, and the former 
discontinuity involves the discontinuity of the am­
plitude 7r + N ---? 7r + 7r + N across the 4M2 cut. 
This we write as9 

- --t::::L = --f?'r-... ~-~ (7) 

where 

:::@: - =0== = ~S: (8) 

defines the (i) bubble. The (i) bubble is a convenient 
construct in terms of physical region amplitudes 
and (8) need not be thought of as involving an 
appeal to an unphysical unitarity equation [though 
in fact (8) is just the continuation of such an equa­
tion10

]. Taking careful account of signs, we find 
that our continuation demands the addition of the 
term 

$:-, , 
8 Compare a similar discussion in the Appendix of J. C. 

Polkinghorne, Nuovo Cimento 25, 901 (1962). 
• This, we show in Ref. 3, is the correct form of the dis­

continuity near the I = 4M2 normal threshold. This is ap­
propriate for use in the discontinuity associated with L when 
we are very near to L; if we continue away from L the form 
(7) of the I-discontinuity may suffer distortion of its integra­
tion contour. 

10 D. 1. Olive, Nuovo Cimento 29, 326 (1963). 

to the term under study. By (8), we may write 
this as 

~- ~-- , - + ' + '_'- '~ (9) 

Figure 2(d) 

If we label the three internal momenta in a 
way similar to the previous case, and define l = 
(ql + q2)2, u = (ql + q2 - Pl)2 as before, then part 
of the boundary of the (l, u) integration is the 
curve B' previously introduced. However, l = 4M2 
now plays a different role. It is again a singularity 
of both the right- and left-hand bubbles, but it 
is also a singularity of the Jacobian of the trans­
formation of the integration variables from qt, q2,' qa 
to l, u and other variables that were supposed to be 
integrated out. Furthermore, it is part of the bound­
ary of integration, together with B', 

The icecream-cone singularity L arises from the 
"corner" U c formed by Band l = 4M2 of the 
integration boundary passing through the pole u = !J.2 

of the right-hand bubble (Fig. 9). If we make a 
displacement (5) away from the critical configura­
tion, we find3 that U c suffers a displacement du 
along l = 4M2

, where 

du = [aaCai + a~)/a2(at + a2 + aa)] d'T/. 

So, for 1m d'T/ < 0 the corner passes below the pole 
u = l except on the arc XA, and the continuation 
is natural except on this arc. 

The integral has the form 

1 11+(,,) cp(u, l) 
du dl 2. , 

'" 4M' U - P. - ~E 

where [l+(u), u]lies on B'. This is 

"'=,.." 

Ca) 

ee) 

FIG. 9. The integration 
region in the I, 'U plane. 
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where ""(u, 1) = I!Mt cp(u, 1) dl and has a singularity 
when the upper end point coincides with the sin­
gularity 1 = 4M2 of cp, namely at u = U c • So, in 
the u plane there is a pole u = Il, and a branch 
point at u = U c on top of the end point of the 
integration. When dT] takes a circuit in the complex 
7J plane, U c goes round the pole and picks up the 
residue at the pole. The discontinuity of the bubbles 
wi th respect to the l = 4M2 normal thresholds 
does not come in-the pole is independent of the 
sheet of these branch points. Again with due care 
about signs, the effect is that we must add the term 

(10) 

to the natural continuation. 

Figure 2(e) 

Labeling the momenta as in Fig. 10, we take the 

---------1'. FIG. 10. Mo-
- - - -Pa menta for the mech-

.I----'P3 anism of Fig. 2( e). 

integration variables as 1 = (PI + q2)2 and others 
that we suppose have been integrated out. The 
icecream-cone singularity L arises when the end 
point of the l integration coincides with the normal 
thresholds 1 = 4M2 of the left-hand bubble. In a 
continuation (5) across L with 1m d7J < 0, the 
end point passes above the normal threshold on the 
arcs 0:> X, B 0:> and so this continuation is natural 
on these arcs. On the other arcs, XA and AB, it 
differs from the natural continuation by an integral 
in which the left-hand bubble is replaced by its 
discontinuity across the l = 4M2 cut. From (7) 
this integral is 

(11) 

4. GETTING THE ANSWER 

The terms (9), (10), and (11) cancel on the arc XA 
and are not present on the arcs IX) X, B IX). On the 
arc AB, only the term (11) is present. Hence the 
continuation of (3) from outside L to inside L via 
1m d7J < 0 reads 

~-:: -~~ ~-~= 

same terms as in (3), except 
that fourth term on the right­
hand side is replaced by 

-"t"i"t.-''':;= 
~ 

and there is an additional 
term (11) on AB. 

Subtracting this from (3) and rearranging, we have 

{

O .... -X,XA,e .. 

( :.:e= -~) (=== -:s.:):: ~.:s: on A& • (12) 

Postmultiplying by the factor 

==== + ~ 
and using the unitarity relation 

we obtain 

f
o on GO X,)(A, Boo 

::.:(!E - :.:@;:::; " ~: , 
~onAB 

So, just as in finite-order perturbation theory, the 
icecream-cone singularity appears only on the posi­
tive-a part of the arc. 

5. NATURE OF THE SINGULARITY 

The aim of this section is to show that the ice­
cream-cone singularity is two-sheeted. We label by 
(j) the amplitude obtained by continuation round 
the normal threshold u = (M + m)2 and we assume 
the relation 

-"€t== -~ = -~, (13) 

where on the right-hand side the integration is as 
it would be in an ordinary unitarity integral, 
provided that u is sufficiently close to the normal 
threshold. In particular, this will be the case when 
u is at a point P just above the part OB of the 
normal threshold (Fig. 5). Equation (13) is analogous 
to Eq. (7) but, unlike the latter, it refers to a 
singularity on the edge of the physical region. This 
means that it cannot be proven by the methods 
of Ref. 3 but must, at present, be taken as an ex­
plicit assumption. It can be shownll that (13) 

11 W. Zimmerman, Nuovo Cimento 21, 249 (1961); see 
also Ref. 6. 
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implies that the u (M + m)2 normal threshold 
is two-sheeted. In addition to (13), we make use 
of our result that only the arc AB of L is singular 
on the physical Riemann sheet. The fact that· the 
arc B co is nonsingular on the physical sheet has 
the important consequence that AB is not singular 
for the amplitude 0), since the 0) amplitude on 
AB is obtained from the physical amplitude on B co 

by continuing around the normal threshold, and 
the disc theorem of complex variable theory implies 
that the nonsingularity persists on continuation.6 

We now continue (13) away from P, round the 
arc AB of L, and back again to P. We do this first 
in one sense around L, so that as a result of the 
continuation 

--"€F= = -+ -:.:::(D= = = , 
say, and then in the other sense so that 

Our aim is to show that 

--@::-, (14) 

which will establish the two-sheetedness of L. 
The continuations will have no net effect on the 

second term on the left of (13), because we have 

said that the arc AB is not singular for this term. 
The term on the right is, except for the labels on 
one of the bubbles, the same as that in Fig. 2(e), 
which we have already discussed. From the discus­
sion there it is evident that the results of the two 
continuations are 

- ...(i'\:. -_-:..::.:. 
~ 

and 

-~=::.=.: ~ 
In direct analogy with (11), the functions ill and 
il2 are integrals of the discontinuity of the left-hand 
bubble across the l = 4M2 cut. Further, because 
the latter cut is assumed two-sheeted, 

If now we subtract one continuation of (13) from 
the other, and rearrange, we have 

V:.:QJ::.:-- -=€E-~~--- ---) - 0 -- - . - --- - ~- -- ~- . (15) 

This equation may be inverted in exactly the same 
way as (12) and the result is just (14). 
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The manifold of solutions of certain classes of N /D equations is considered, under the restriction 
that the scattering amplitude have a uniform bound in all complex directions. Two cases are treated: 
(i) The N integral equation is Fredholm, but the associated homogeneous equation may have solutions; 
(ii) the equation has the marginally singular behavior characteristic of an asymptotically constant 
left-hand cut discontinuity. The existence theorem in the latter case proceeds by the construction of 
the appropriate resolvent. 

1. INTRODUCTION 

T HE purpose of this paper is to investigate 
the existence of solutions of N / D equations.1 

In the cases in which the integral equations can be 
reduced to Fredholm form, the possibility that the 
associated homogeneous equation has a solution is 
considered. 2 The "marginally singular" behavior, in 
which F(p) ,....., log P, P ~ CD, is investigated by the 
explicit construction of the resolvent kernel of the 
resulting integral equation. Some properties of this 
resolvent, together with those of the solutions it 
generates, are adduced. This work complements that 
of Ref. 3, where similar resolvents are applied to 
certain physical problems. 

It is unnecessary to consider equations with mul­
tiple subtractions, since it can be shown that an 
n-times-subtracted equation is equivalent to an un­
subtracted equation with n eDD poles.4 Accord­
ingly, since eDD poles do not affect the Lebesgue 
classes of any of the functions or kernels considered 
in this paper, for brevity, all equations are written 
without such poles. Again, in an inelastic system, 
the Lebesgue classes are not altered if '1](11) or R-I(p) 
(functions describing the inelasticityl.6) have no 
finite zeros, and do not tend to zero too rapidly 
as P ~ CD.

4 Then an inelastic equation can be 
treated by the same methods as those given in 
this paper. 

The question of zeros of the D function is not 
considered explicitly. They must occur neither in 
the complex plane, nor in the physical region. How-

* This work was supported in part by the Air Force Office 
of Scientific Research, Grant No. AF-AFOSR-232-63. 

1 G. F. Chew and S. Ma,ndelstam, Phys. Rev. 119, 467 
(1960). 

! D. Morgan, Nuovo Cimento 36, 813 (1965). 
, D. Atkinson and A. P. Contogouris, Nuovo Cimento 39, 

1082 (1965). A. P. Contogouris and D. Atkinson, Nuovo 
Cimento 39, 1102 (1965). 

4 See D. Atkinson and D. Morgan, Nuovo Cimento 41, 
559 (1966). 

6 G. Frye and R. L. Warnock, Phys. Rev. 130,478 (1963). 

ever, in the absence of essential singularities, there 
can only be a finite number of zeros, so that the 
additional constraints on the input have no implica­
tions regarding the Lebesgue classes of the permitted 
solutions. 6 

In Sec. 2, the possibilities are divided into the 
classes in which (a) the N equation is Fredholm; 
(b) the kernel is L2 but the inhomogeneous term 
is not; (c) the equation is marginally singular. Sec­
tions 3 and 4 are devoted to this marginally singular 
case. 

2. LEBESGUE CLASS OF N / D KERNELS 

Consider the elastic scattering of two indistin­
guishable spinless bosons of mass unity; and let the 
partial-wave amplitude be AJ(p), where p is the 
momentum squared, and J the angular momentum. 
Suppose that the argument of AJ(p) has limited 
total fluctuation in the physical region: 0 ~ P < CD. 

Then a decomposition 

AJ(p) = p-"NJ(II)/D,,(p) (2.1) 

exists/ in which N ,,(p) has the unphysical cut 
- CD < P ~ -1, and DJ(p) has the unitarity cut 
o ~ p < CD; moreover, neither N nor D has kine­
matical singularities. For simplicity, it is assumed 
that there are no elementary particles or bound 
states with the quantum numbers of the scattering 
channel, so that N has no poles and D has no zeros. 

The function N J(p) satisfies 

11'" N .1(11) = F J(p) + - dp' p,J pep') 
7r 0 

6 A. P. Contogouris (unpublished); A. P. Contogouris and 
D. Atkinson, "N /D Equations, Bethe-Salpeter Models and 
High Energy Scattering" (to be published). 

7 R. Omnes, Nuovo Cimento 8, 316 (1958). 

1607 



                                                                                                                                    

1608 D. ATKINSON 

where 

11-1 
d' FJ(v) = - _,_v_ 1m [v,-.r A.r(v')] 

11" _'" V - v 
(2.3) 

and the phase-space factor is p(v) = [v/(v + 1)]l. 
The denominator function is given in terms of a 
solution of (2.2) by 

DJ(v) = 1 - ! r" dv' v,.r p(v') ~.r(v'). (2.4) 
11" Jo v - v 

Although the ensuing discussion is limited to integral 
J values, most of the results can be extended to 
any real J. 

According to the unitarity condition for a physical 
amplitude, 

p(v) IA.r(vH' = 1m A.r(v) ~ 1, 0 ~ v < ex>. (2.5) 

It is supposed that a similar limit exists on the 
left-hand cut, namely 

(2.6) 

As may be shown from the Phragmen-LindelOf 
theorem,8 the following set of assumptions is suffi­
cient to ensure that (2.5) implies (2.6): 

AJ(v) f'OooJ va(log vi(log log v)1' •. , 

X (log log .,. log vt, v --? 0) I 

(2.7) 
AJ(v) f'OooJ va '(log v)P'(log log v)'Y' .• , 

X (log log· .. log v)"" , V --? - 0) , 

E> 0, (2.8) 

where a, {3, •• , , w, a', (3', .•. , w', and C1 are some 
constants, and (2.8) is supposed to hold in all com­
plex directions. 

Three classes which satisfy (2.6) are distinguished 
and treated separately: 

(a) IA.r(v) I < C2V-
i
-'} some E < 0, 

(b) IAJ(v)! < Cav-' 

(c) IAJ(v) I --? A ~ 1. (2.9) 

In this paper the possibility that AJ(v) tends to 
zero at v = (X) more slowly than any power of v 
is not considered; although the case F .,(v) f'OooJ l/log v 
can be solved by an extension of the methods of 
Sec. 3. 

Class (a) 

Both the kernel and the inhomogeneous term of 
(2.2) are square-integrable for any J ~ 0, because 

8 E. C. Titchmarsh, The Thecry of Functions (Oxford 
University Press, New York, 1950). 

v ~ 0 

(2.10) 

From this, it follows that (2.2) is Fredholm, so that, 
unless there is a homogeneous solution, a unique 
square-integrable solution N J exists. Moreover, the 
integral in (2.4) that defines D J exists. 

In the case that a homogeneous solution of (2.2) 
does exist, i.e., there is a function nJ(v) such that 

(2.11) 

there will be, in general, no solution of (2.2) (the 
Fredholm alternative theorem). However, in such 
a case one can define a function 

(2.12) 

This specifies a new decomposition 

satisfying the usual requirements, except that 
d.r(v) --?_"" O. In this case A.,(v) is said to belong 
to a CDD class of negative index.4 The solution n J 
of (2.11) need not be unique, although the number 
of linearly independent solutions must be finite (the 
multiplicity of the corresponding eigenvalue). 

Finally, there is the possibility that there are 
solutions n.rCv) of the associated homogeneous equa­
tion, but that, for any such, 

In this case a solution of (2.2) does exist, but it 
is not unique, since any homogeneous solution nJ(v) 
may be added. This possibility is considered else­
where4 in connection with coincident zeros of N J 

and D J • 

Class (b) 

In this case 

(2.15) 

so that (2.2) is Fredholm for J ~ 1, and the con­
siderations pertinent to class (a) apply. For J = 0, 
F J(v) may not be square integrable, so that (2.2) 
is not Fredholm. However, the kernel is still L 2, for 
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I
Fo(v) - FaC-v') I 

v - v 

< C7 f" dv" (v lf + :;~::, + v')' v, v' ~ 0 

< C 1'" dv" V"-' 
7 (-,,-+--) -'-'--:ti-'-(1---'-' )--:,:-:-(1:-+--"',) 

1 V V V V 

- C ( ,)-to+,) 
- 8 W • (2.16) 

Hence (2.2) has a resolvent kernel; but a solution 
may not exist if the contraction of this resolvent 
with F 0(1') fails to converge. 

However, a solution may be found in this case 
by subtracting the D equation at, say, v = 0, and 
normalizing it to unity at this point. The modified 
integral equation is 

Ii'" No(v) = Fo(v) + - dv' p(v') 
7r 0 

X 
vFo(v) - v' Fo(v') No(v') 

, " v - v v 
(2.17) 

with Fo(v) defined as in (2.3), and Do(v) given by 

Do(v) = 1 - !:.1'" dv' p(v') ,ro(v'». 
7ro vv-v 

(2.18) 

The symmetrized form of (2.17) is 

No~v) = Ep + ! 1'" dv' p(/I') 
V V 7r 0 

X
I /lFo(v) - v'Fo(v') No(/I') 
~ ,-,.--' (w')' /I - /I V'T 

(2.19) 

The inhomogeneous term is now square integrable, 
for 

(2.20) 

while the Lebesgue class of the kernel has not been 
changed by the subtraction procedure (an invar­
iable property of N /D kernels). Hence a solution 
exists even for the S wave, involving no CDD 
parameters. 

Class (c) 

This is the "marginally singular" possibility in 
which the discontinuity tends to a constant at 
infinity. This kernel singularity, which can be 
specified loosely by saying that the norm diverges 
logarithmically, is the most singular behavior tol­
erated by unitarity. The additional assumption 

1m AJ(v) = AJ + r J(v) , (2.21) 

where 0 < AJ ~ 1 and rAv) = O(v-') with E > 0, 
is made. 

For Class (c) amplitudes, it is more convenient 
to replace (2.1) by 

AJ(v) = NJ(v)/DJ(v) (2.22) 

for all physical J, and then subtract both N J and 
D J equations at threshold. The resulting equations, 
which replace (2.2)-(2.4), are 

NJ(v) = aJ + FJ(v) 
v /I V 

+ ! 1'" d' (') FJ(v') - FJ(v) NJ(/I') . vpv, I, 
7ro 1'-/1 V 

where 

V 1-1 
dv' 

F J(V) = - '(' ) 1m AJ(v') 
7r _'" V /I - V 

and 

/I 1'" N (Vi) DJ(v) = 1 - - d/l' p(/I') '( / )' 
7ro 1'/1-1' 

For J ~ 1, the subtraction constant 

11-1 
dv' aJ = -- 12 1m A Av' ) . 

7r _'" V 

(2.23) 

(2.24) 

(2.25) 

For J > 1 there are additional threshold conditions, 
while for J = 0, aJ constitutes an arbitrary param­
eter. Substituting (2.21) into (2.24) gives 

FJ(v) = (AJ/7r) log (/I + 1) + CJ + OV'), (2.26) 

where the constant C J is given by 

If one writes 

x = 1'+1, 

cf>J(x) = N J (1')/1' , 

cf>~(x) = aJ + F J(/I) 
V 

_ (AJ/7r) log x + aJ + CJ + O(x-') 
- x-I 

p(x) = 1 - {(/I + 1)'[vl + (v + l)t]} -1, 

Eq. (2.23) becomes 

cf>Ax) = cf>~(x) 

(2.27) 

(2.28) 

+ A~ 1'" dx' [l~g x' /x + KJ(x, XI)]cf>J(XI), (2.29) 
7r 1 x-x 

where KAx, x') is a square-integrable residual kernel. 
This singular equation may be written 

cf>J = cf>~ + (AJ/7r2)Scf>J + (AJ/7r2)KJcf>J> (2.30) 
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where 

Sex, x') = (log x'lx)' (x' - X)-l 

is a marginally singular kernel. 
In the next section, it is shown that a resolvent 

kernel RJ exists and satisfies 

(2.31) 

moreover, this allows one to define solutions of 
(2.29) for any Fredholm kernel K J • 

3. CONSTRUCTION OF THE RESOLVENT 

AB the first stage in the solution of (2.29), set 

Then, if wJ(x) is such that wAs) exists in part of 
the strip -i < 1m S < i, Eq. (3.2) can be diag­
onalized by Mehler transformation: 

4iJ(S) = wJ(s) + AJ sech2 71's4iJ(s), (3.8) 

This equation can be solved for the Mehler transform 
4iAs). Inversion then yields 

( ) -1 d ~ () P i+i.(2x - 1) q,J X - S WJ S 1 "\ h2 , 
c - I\J sec 71'S 

(3.9) 

where it may be verified that any contour C extend­
ing from - co to + co within the strip -i < 
Im S < i yields a solution of (3.2). By substituting 
the definition of wJ(s) into (3.9), one has 

(3.1) q,J(x) = wJ(x) 

so that 

q,Ax) = wJ(x) + X~ f'" dx' lo,g x'ix q,Ax'). 
11' 1 X - X 

(3.2) 

If one can construct a resolvent kernel R satisfying 
(2.31), then the general solution of (3.2), if it exists, 
satisfies 

q,J(x) = wJ(x) 

+ AJ 1'" dx' RJ(X,X/jAJ)WJ(X' ) + A'liAx), (3.3) 

where A is an arbitrary constant, and q, Ax) is the 
general solution of the homogeneous equation 

.T. ( ) _ AJ f'" d I log x'ix .T. ( ') '1!JX - 2 x, '1!JX' 
11' 1 X - X 

(3.4) 

AB may be verified from the properties of Legendre 
functions, 9 one solution of (3.4) is 

q, J(x) = P _ •• (2x - 1), (3.5) 

where 

and 
o ~ Reso ~ i. 

Suppose now that the "shifted Mehler transform" 
of wAx) is defined by 

wJ(s) = S tanh 71'S 1'" dx wAx)P -t+i.(2x - 1). (3.6) 

This has the unique inverse of 

(3.7) 

• Higher Transcendental Function8, A. Erdelyi, Ed., 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 2. 

(3.10) 

where 

x P -i+i.(2x - 1)P -i+i.(2x' - 1). (3.11) 

The integrand in (3.11) has poles whenever 

cosh2
71's = AJ. (3.12) 

For 0 < AJ < 1, the general solution of (3.12) is 

S = in ± (i/7l') arc cos A~, 
(0, ir) 

n = ... -1,0,1,2, .... (3.13) 

There are two poles inside the strip -i < 1m s < i, 
obtained by setting n = 0 in (3.13). 

A particular resolvent RAx, x' j XJ) may be picked 
out by defining the contour C in (3.11) to be the 
real axis (- co, co). It is easy to verify that RJ 
satisfies (2.27). Moreover, homogeneous solutions 
are obtained by taking C to be a closed contour 
encircling either of the poles in the strip -! < 
1m s < i. These are multiples of P _ •• (2x - 1) or 
P _1+ •• (2x - 1), where So is defined in (3.5), depend­
ing on which pole is taken. However, 

P _ .. (2x - 1) = P _1+ .. (2x - 1). (3.14) 

Hence, there is only one independent homogeneous 
solution. If C is taken to be a contour surrounding 
a pole outside the strip -i < 1m 8 < i, then 
the result is not a homogeneous solution q, J(x), since 
the integral in (3.4) would fail to converge. 
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Finally, the general solution of (3.2) can be 
written 

+ AP_ •• (2x - 1). (3.15) 

That (3.15) is in fact a solution can be verified 
by checking to see if, when using Eqs. (3.1) and 
(2.28), the integral converges uniformly with respect 
to x. This justifies the Mehler transformation. 

As a function of AJ, RJ(x, x'; AJ) has a branch 
point at AJ = 1. This follows from the fact that 
the real contour e == (- <Xl, <Xl) in (3.11) is pinched 
at 8 = 0 when AJ -7 1. The cut may be defined 
(1 ::; AJ < <Xl). The function P _0.(2x - 1) is entire 
in 80; but 80 has branch points at AJ = 0, 1. How­
ever, P _0. (2x - 1) has a branch point at AJ = 0 
only: the branch cut (1 ::; AJ < <Xl) vanishes 
identically, as a result of the relation (3.14). Accord­
ing to (3.15), the general solution will have branch 
cuts (- <Xl < AJ ::; 0) and (1 ::; AJ < <Xl) (assuming 
that the arbitrary factor A is chosen to be holo­
morphic in AJ)' However, one solution, defined by 
A = 0, has just one finite branch point "'J = 1: 
this solution is analytic at AJ = 0 and has a power 
series expansion about that point. 

It is instructive to display the sheet structure of 
RJ (x, x'; AJ) in the AJ variable. In fact, RJ is 
uniform in the variable 80, defined as in (3.5), or 
equivalently, 

(3.16) 

The first sheet of AJ, cut (- <Xl, 0), (1, <Xl), is defined 
to map onto the strip 0 < 1m 80 < !. In Fig. 1 
the complete AJ structure is shown mapped into 
the 8 0 plane. The discontinuity of RJ across the 
cut (1 ::; AJ < <Xl) is just the difference between 
the values of RJ at some point AJ = ! + ito (say) 
and at AJ = ! - ito. The corresponding discon­
tinuity across (- <Xl < AJ ::; 0), the difference cal­
culated from AJ = ito to AJ = -ito is zero, a 
consequence of the symmetry of the integrand in 
(3.11) with respect to 8. This means that there is 
no cut (- <Xl, 0) on sheet I, a fact that has already 
been noted. Sheet II is defined to be the sheet 
connected to sheet I across the cut (1 ::; AJ < <Xl): 
it maps onto the strip ! ::; 1m 80 ::; 1. On this 
sheet there is a branch cut (- <Xl < AJ :$ 0) as 
well as the cut (1 ::; AJ < <Xl). This is true of all 
sheets except the first. As can be seen from Fig. 1, 
a double circuit of A = 1 which does not encircle 
A = 0 brings one back onto sheet 1. On the other 

Sheets I m I 

I 
I h-co 
I 
I 
I 

I h-I 

I 
I I 

I 

I 
II I m I 

I I 
A=-CO 1 h-co I h--co I h'co 

1 I I 
I 
I 

1 I 

I 1 

1""0 -+--+--+--+--+-+-+-+--+-.... Re So 

I I I 
A=-co I A=co A=-co A=co 

I I I 

FIG. 1. Map of the infinite-sheeted X plane into the entire 
80 plane. The contour Kl is the map of a double circuit of 
X = 1, not enclosing X = O. The line K2 is the map of an 
infinite encirclement of both X = 0 and X = 1. 

hand, repeated circuits enclosing A = 0 and A = 1 
plunge one into lower and lower sheets. The branch 
points may be said to be individually like square 
roots, but together like a logarithm. 

It should be noted that the continuation of cf>J(x) 
onto a higher sheet is not a solution of (3.2) in 
general, because the integral would diverge. The 
NJ(v) and DJ(v) functions that can be defined from 
the continued cf>J(x) correspond in fact to N ID 
solutions of higher eDD classes.4 

4. COMPLETE SOLUTION 

The problem to be investigated in this section is 
the existence of a solution of Eq. (2.29), correspond­
ing to each solution (3.15) of (3.2). Suppose one 
writes Eq. (3.15) in operator form: 

cf>J = WJ + AJRJwJ + AP_... (4.1) 

Then, substituting for WJ according to (3.1), 

cf>J = cf>J + (AJI-i)KJcf>J + AJRJcf>~ 
+ (A;/7l)KJRJcf>J + AP _Ie' (4.2) 

It was shown in Ref. 3 that RJ satisfies the family 
of majorizations 

!RJ(x, x'; AJ)! ::; B1x-b'xd +
p (4.3) 

for any -! + 80 ::; P ::; ! - 80, with Bl some 
constant. It follows from (2.26) and (2.28) that 

!KJ(x, x') I ::; B 2(xx,)-i-i'. (4.4) 

Then, from (4.3), (4.4), and (2.28), 

cf>J + AJRJcf>J 
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is a square-integrable function and 

KJ + 'AJKJRJ (4.5) 

is a square-integrable kernel. Hence, in the case 
A = 0, (4.2) is a Fredholm equation, and a solution 
almost always exists. However, 

p _a,(2x - 1) '" x-a" 0<80 < i, (4.6) 

so that if A ~ 0, the inhomogeneous term in (4.2) 
is not square-integrable, and, in general, a solution 
will not exist. In fact, suppose that the resolvent 
of the Fredholm kernel KJ + 'AJKJRJ is 5'J. If 
the contraction 5'J P _a, converges, then a solution 
of (4.2), and hence of (2.29), exists for any constant A. 

If, for a given Ah the condition (2.21) can be 
strengthened to 

(4.7) 

one can show that 5'J P _a, always converges, so that 
there is always a one-parameter infinity of solutions. 
For in this case 

for any -i + 80 < 1] < t. Then it follows from 
(4.3) and (4.8) that 

IKJ(X, x') + 'AJ f' dx"KJ(x, x")RJ(x", X,)I 
< B4x-1- Jl -

a 'x,-1+JI (4.9) 

for any - i + 80 ::; P ::; i - 80. If it is supposed 
that the Fredholm resolvent 5'J, which is itself 
Fredholm, satisfies some power bound, 

15'J(x, x') I < B4x-"x'-' with u, v > i, (4.10) 

then (4.9) implies that, in fact, u = ! + p + 80, 

V = i - p, with -i + 80 ::; P ::; i - 80, as in (4.9). 
By choosing p = - i + 80, one sees immediately 
that 5' JP -t, converges, so that (4.2) always has a 
solution. 
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An expression for the r-particle distribution function (r ~ 3) for classical gases in terms of the 
pair potential is converted to an expression in terms of the pair correlation function by graph-theo­
retical means. The new formula involves a sum over all basic graphs with G-bonds, having r root 
points, where G(r) + 1 is the pair correlation function. 

INTRODUCTION 

T HE r-particle distribution functions for a clas­
sical system are normally expressed as a func­

tional of the pair potential between particles. 1 A 
quantity which is more readily accessible to direct 
experimental determination2 is the pair correlation 
function, g(r), and it will be shown here how to ex­
press the r-particle distribution function as a func­
tional of the radial distribution function. 

The systems considered here are classical systems 
of identical particles, in equilibrium at temperature 
T, having a symmetric pair potential. If there are 
N particles in a volume V, then one knows from 
statistical mechanics that the relative probability 
of finding particle 1 in the volume element dr1 about 
rlJ particle 2 in the volume element dr2 about r2, ... , 
and particle N in the volume element drN about 
rN, is 

TV N(r1 , ••• , rN) drl ••• drN 

= WN(l, ... , N) dr1 ••• drN 

is the probability of finding any particle in the 
volume element dr1 about rl, a second particle in 
the volume element dr2 about r2, ... , and an rth 
particle in the volume element dr. about r., irre­
spective of the positions of the N - r other particles. 
Thus we see that 

n (1 ... r) =.!.. N! J ... J dr 1··· drN ., , QN (N - r)! r+ 

x WN(1, ... ,N), (2) 

QN = J ... J drl ... drN WN(I, ... ,N). (2a) 

If we let N and V go to infinity, keeping the 
density p = N IV constant, the expression (2) for 
n. can be put in an entirely different form (while 
keeping n. a functional of rp) by the use of graph 
theory. This form is given at the beginning of Sec. 
3, after the definitions necessary for our graph 
theory work are given in Sec. 1. It involves sums of 
weights over all s(r) graphs having i-bonds, where 

= exp [-/3~N(l, ... ,N)] dr1 ••• drN, (1) i(lr; - riD = i;i = exp [-/3rp(lr; - riD] - 1. (3) 
N 

~N(1, ... ,N) = E rp(lr; - riD, (Ia) 
i<;-2 

where rp(lr/ - rii) is the pair potential between 
particle i located at r; and particle j located at rj, 
and where /3 = I/kT. 

The r-particle distribution functions, n" are de­
fined so that 

n.(r1 , ••• r.) dr1 ••• dr. = n.(I, ... ,r) dr1 ••• dr. 

* Work supported in part by the U. S. Atomic Energy 
Commission. 

t Most of the work on this paper was done while the author 
was a National Science Foundation Cooperative Fellow 
(1964-65) at Case Institute of Technology, Cleveland, Ohio. 

1 G. K Uhlenbeck and G. W. Ford, Studies in Statistical 
Mechanic8, J. De Boer and G. E. Uhlenbeck, Eds. (North­
Holland Publishing Company, Amsterdam, 1962), Vol. 1 
Part B. The work in this reference is a graph-theoretical 
restatement of the original work by J. E. Meyer and E. 
Montroll, J. Chern. Phys. 9, 2 (1941). 

2 M. D. Johnson, P. Hutchinson, and N. H. March, 
Proc. Roy. Soc. (London) A282, 283 (1964). 

Next in Sec. 3, we give another form for n., ex­
pressing it as an explicit functional of the pair 
correlation function. This form involves sums of 
weights over all B(r) graphs having G-bonds, where 

G(lr; - ril) = G;i = gij - 1 

= p -2n2(lr; - r i i) - 1. (4) 

Here, gij is the pair correlation function. 
A similar statement was advanced but not proved 

by van Leeuwen, Groeneveld, and deBoer3 in their 
paper on the hypernetted chain theory, namely that 
exp (-/3rpI2) could be expressed as an explicit func­
tional of the pair correlation function. These state­
ments are proved at the end of Sec. 3 with the help 
of the lemmas developed in Sec. 2. 

3 J. M. J. van Leeuwen, J. Groeneveld, and J. De Boer, 
Physics 25, 792 (1959). 
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1. TERMINOLOGY AND PROPERTIES OF GRAPHS 

In this section, we introduce some specific ter­
minology associated with the graphs that will be 
used in establishing the results outlined in the 
Introduction. This terminology, while in many re­
spects related to that employed in other standard 
works (which is not always uniform), differs from it 
in details, and has been specifically tailored to the 
needs which follow. The following definitions should, 
therefore, be read with care by anyone interested 
in the details of the proofs of the succeeding sections. 

Abstract graph. An abstract graph with n points, 
r root points, and k = n - r field points, is an entity 
defined by three sets of elements: 

(a) A set of elements, r in number, called 
root points. 

(b) A set of elements, k = n - r in number, 
called field points. 

(c) A subset (proper or improper) of the set 
of all (unordered) pairs of distinct points (whether 
root or field points) called links. 

An abstract graph may be given a pictorial rep­
resentation by indicating root points by open circles, 
field points by filled circles (dots), and links by lines 
connecting "linked" pairs of points. An example 
is given in Fig. 1 (a) of an abstract graph with two 
root points, three field points, and seven links. 

In order to deal with a graph symbolically, it 
is necessary to associate with each element of the 
graph a symbol (label) to identify it. As in all such 
cases, it is expedient to distinguish between the 
abstract element itself and the label which identifies 
it, the latter corresponding to some "coordinatiza­
tion" of the graph. This is of particular importance 
for us, since we shall be involved with processes 
which permute some of the labels of the abstract 
elements. 

The nature of the symbols which are used to label 
the points of a graph is of no intrinsic significance, 

(01 (bl 

(e) (dl 

FIG. 1. Abstract and labeled graphs. 

provided only that the labels serve to identify and 
distinguish points. It is often convenient to select 
them to be simply the first n integers. In this case, 
we reserve the first r integers to label the root points 
and the remaining n - r integers to label the field 
points. With these remarks we then define a labeled 
graph 

Labeled graph. A labeled graph is an abstract 
graph in which the points carry identifying labels. 
One may, however, regard a labeled graph as a 
graph in its own right defined by a set of (labeled) 
root points, a set of (labeled) field points, and a set 
of links which can now be explicitly symbolized by 
giving the labels of the linked pairs of points. Thus 
the graph of Fig. 1 (b) is a labeled graph in which 
the set of root points is [1, 2], the set of field points 
is [3, 4, 5], and the set of links is [(1,3), (1,4), (1.5), 
(2,3), (2,5), (3,4), (4,5)]. 

Equality of labeled graphs. We define two la­
beled graphs to be equal if their set of root points, 
their set of field points, and their set of links, are 
identical. Thus the graph of Fig. I(c) is equal to 
that of Fig. I(b) as may be seen by writing down 
these sets for the graph l(c) and comparing it with 
the sets written down above for I(b). On the other 
hand, the graph in Fig. I(d) is not equal to that in 
l(b) as can be seen by carrying out the same process; 
in particular, the link (2,4) occurs in I(d) but not 
in I(b). 

Generic equivalence of labeled graphs. Two la­
beled graphs are defined to be generically equivalent, 
if and only if, some permutation of the labels of the 
field points alone of one yields a graph equal to the 
other. (Note that the labels of the root points are 
not permuted.) Thus in Fig. 1, the labeled graphs 
(b), (c), and (d) are all generically equivalent, but 
in this case (b) and (c) are also equal while (b) 
and (d) are not equal. 

Invariance group of a labeled graph: i-permuta­
tions; symmetry number. If one considers the totality 
of permutations of the labels of the field points of 
a labeled graph, these form a group of order k!; 
namely, the symmetric group on k-objects, where 
k is the number of field points. This group will 
contain a subgroup (not necessarily proper) con­
sisting of those permutations which carry the labeled 
graph into one equal to the original; such permuta­
tions are called i-permutations of the graph. The 
group of i-permutations of a labeled graph is called 
its invariance (or symmetry) group, and the order of 
the invariance group is called the symmetry number 
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of the graph. The invariance groups of generically 
equivalent graphs are clearly isomorphic and have 
the same symmetry number. Also, k! divided by the 
symmetry number is the number of distinct labeled 
graphs which can be obtained from a given labeled 
graph under all k! permutations of the labels of its 
field points; two graphs are distinct if they are 
unequal. 

Generic graph. It is often convenient to consider 
the totality of graphs which are all generically 
equivalent to constitute a single entity which is 
called a generic graph. A generic graph can be rep­
resented by a diagram of the same character as an 
abstract or labeled graph except that only the root 
points are labeled. Clearly a labeled graph and a 
generic graph can be considered associated according 
as the second can be derived from the first by re­
moving the labels from the field points, or the first 
derived from the second by assigning appropriate 
labels to the field points. 

It will be convenient from this point on to reserve 
the unqualified word "graph" for a labeled graph, 
and to refer to generic or abstract graphs by explicit 
qualification. Furthermore, in succeeding definitions, 
we shall sometimes define a property of a graph 
which is purely "topological" in the sense that it 
is a property of the points and links which is inde­
pendent of the specific labeling of the points. In 
such cases, the definitions will be phrased for labeled 
graphs, but the generalization is usually obvious for 
a generic or abstract graph. 

Chain. A chain between the points i l and i. 
of a graph is an ordered subset [ii, i 2 , ••• i.] of 
distinct points of the graph such that there is a link 
between each pair of adjacent points of the ordered 
subset. Thus, in Fig. l(b), the chains between the 
point 1 and the point 4 are [1, 4], [1, 5, 4], [1, 3, 4], 
[1, 5, 2, 3,4], [1, 3, 2, 5, 4]. The point i l is called the 
origin of the chain and the point i. is called its ter­
minus. 

Loop. A loop is an ordered subset [ii, i2 , ••• , i.] 
of points of a graph which would be a chain except 
for the fact that its origin and terminus coincide, 
i.e., i l = i •. In this case any point of a loop can be 
considered its origin (and terminus). 

The points of a chain other than its origin and 
terminus will be called interior points of the chain, 
and the chain will be said to pass through such points. 
In the case of a loop, we will say that the loop passes 
through all of its points, including the one which is 
considered to be its origin and terminus. It should 

also be noted that according to our definitions, if 
two points i and j are linked, there exists at least 
one loop passing through them, namely the loop 
Ii, j, il. 

Since the totality of the chains of a graph or the 
totality of loops of a graph completely determine the 
links of a graph, two graphs will be equal, if, and 
only if, they have the same set of root points, the 
same set of field points, and the same set of chains 
or loops. 

Connected graph. A connected graph is a graph 
for which there is a chain connecting all distinct 
pairs of points of the graph. Thus graph (a) of Fig. 
2 is not connected, but graph (b) of the same figure 
is connected. 

Articulation point. An articulation point of a 
connected graph is a point with the property that 
all the remaining points of the graph can be divided 
into two disjoint nonempty subsets A and B such 
that every chain from a point of A to a point of B 
passes through the point a. 

Star graph. A connected graph with the property 
that none of its points are articulation points is 
called a star graph. It is readily seen, and shown, that 
a graph is a star graph if, and only if, there is a 
loop through every pair of points of the graph. 

Primitive graph. A primitive graph is a connected 
graph with at least two root points, such that it 
would become a star graph if links were inserted 
between every pair of root points which are unlinked 
in the original graph. 

Simple graph. A simple graph is a primitive graph 
having no links connecting pairs of root points and 
with the further property that between any two 
points there exists at least one chain not passing 
through a root point. 

We need to define subclasses of simple graphs in 
the case that there are two root points. The ap­
propriate definitions follow: 

Nodal point; nodal graphs. A field point of a 
simple graph with two root points with the property 
that every chain between the two root points passes 
through this point is called a nodal point. A simple 
graph with two root points which contains a nodal 
point is called a nodal graph. 

Elementary graph. A simple graph with two 
root points which contains no nodal points is called 
an elementary graph. 

There are a number of concepts between this 
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point and the end of Sec. 2 which apply to simple 
graphs if there are three or more root points, but 
only to elementary graphs if there are just two root 
points. To avoid a number of parenthetical remarks, 
we make the convention that whenever a simple 
graph is referred to between here and the end of 
Sec. 2, it must also be elementary if it has only two 
root points. For instance, the definition of non basic 
and basic points to follow applies only to elementary 
and not to nodal graphs. 

Nonbasic point; basic point. A nonbasic point m 
is a field point of a simple graph with the property 
that there exist two points, p and q (distinct from 
m and not both root points) such that every chain 
with m as its origin and a root point as its terminus 
contains either p or q as an interior point or as a 
terminus. A field point of a simple graph which is 
not nonbasic is called a basic point. In Fig. 2(g), 
the point 4 is a basic point while 5, 6, 7, 8, 9 are 
nonbasic. Clearly a basic point must be linked to 
at least three other points of the graph. 

Basic graph. A basic graph is a simple graph all 
of whose field points are basic points. 

In what follows it will often be convenient to 
designate primitive, simple, and basic graphs with 
r root points by p(r), s(r), and B(r), respectively, 
and to designate nodal and elementary graphs by 
N(2) and E(2), respectively. 

SubgraPh. A subgraph of a graph consists of a 
proper subset of the points of the original graph 
together with all links of the original graph which 
connect pairs of points belonging to the subset. 

(al (bl (el 

(dl (el 

~ 
2 3 

. (hI 

3 
(g) 

FIG. 2. Examples of types of graphs (a) not connected; 
(b) connected, not star; (c) primitive, not simple; (d) nodal, 
not elementary; (e) elementary, not basic; (f) basic; (g) 
simple, not basic; and (h) basic. 

Total i - j subgraPh. Let i and j be two points 
of a simple graph such that either both are basic 
points, or one is a basic point and the other a root 
point. Then the total i - j subgraph of the simple 
graph is the subgraph consisting of the points i and 
j together with all points m such that every chain 
with m as origin and a root point as terminus con­
tains either i or j, but excluding such a graph which 
consists only of the points i and j with no link be­
tween them. Thus the total 1-4 subgraph of the 
graph 2(g) is the graph 3(a); but the graph 3(b) is 
not a total 3-5 subgraph of the graph l(b). 

I 
6(/?778 9 5 4 f3: 

FIG. 3. Subgraphs. ~ 

(a) (b) 

Basic graph derived from a simple graph. We 
may derive another graph from a simple graph by 
replacing each total i-j subgraph of the simple graph 
by a single link connecting i and j. The resultant 
graph will be called the basic graph derived from the 
simple graph. Thus the basic graph derived from the 
graph 2(g) is the graph 2(h). It can be shown that 
the basic graph derived from a simple graph is 
itself a basic graph. What this means is that it not 
only contains as field points only basic points of 
the simple graph, but that each such field point is a 
basic point of the resultant graph. 

Basic equivalence of simple labeled graphs. Two 
simple graphs are basically equivalent if, and only 
if, a permutation of the labels on nonbasic points 
alone of one yields a graph equal to the other. 

Weight associated with a generic graph. The 
application of graph theory to the considerations to 
follow lies in the fact that we shall be dealing with 
certain functionals each of which can be associated 
with a specific generic graph. The functionals with 
which we shall deal all have a particular form and 
we shall confine our remarks to these. 

In our considerations, the points of a graph are 
identified with the positions of the identical particles 
constituting the physical system under study. Each 
link of a graph is associated with a specific function 
of the spatial separation of the two particles whose 
points are linked. Such a function we call a bonding 
function, and if the bonding function associated with 
the link (i, j) of the graph is the function fer;;) = 
fi;, with ri and r; the positions of the ith and jth 
particles and ro; their separation, then we shall say 
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that we have an f-bond; if the function is G(rij) = 
Gif , we say we have a G-bond. 

Now, let S be some generic graph with its root 
points labeled from 1 to r and with k = n - r field 
points. Consider an associated labeled graph SeLl) 
where Ll represents some particular labeling of the 
field points from r + 1 to n. The weight that will be 
associated with such a graph, if the links correspond 
to I-bonds, will be a function ws(r l , ••• , rr; I) 
defined by 

w,(1 ... r; f) = [P'lt(s)] I ... I drr+l ... dr,.1rji;' 

(5) 

where p is a parameter (generally the density of the 
system in particles per unit volume), t(S) is a pure 
number called the weighting number, dependent 
upon the generic graph S, the integrals extend over 
all space, and the product of the bonding functions 
1rlii includes one factor Ii; for every (i, j) link which 
occurs in the generic graph. Since the variables 
rr+l to r,. occurring in the integrand are dummy 
variables, the weight of a generic graph is inde­
pendent of the particular labeling (L l ) of the graph 
that has been selected. The weighting number t(S) 
will often, but not always, be just the symmetry 
number s(S) of the generic graph, and if it is, we will 
designate the weight by "'s(l, 2, ... , r; I), i.e., 

"'s (1, ... ,r; f) 

= [pr Is(s)] I ... I drr+ l ••• dr,. 1r/ii. (5a) 

Thus, for example, the graph of Fig. 2(f) has as­
sociated with it the weight 

w,(I, 2; f) = [llt(s)] II dra dr4 113/12/23/24/34, 

and if w, = "'$, then t(S) = s(S) = 2. 
There are some specific results which follow from 

these definitions which form the foundation of the 
arguments to follow. It is clear from the definition 
of a total i - j subgraph that, if we consider the 
points i and j of such a subgraph to be root points, 
then such a subgraph is always a p(2) graph. Con­
sider the set of all s(r) graphs. With each there will 
be associated its derived B(d graph. In general, 
many different S(d graph may give rise to the same 
derived B(r) graph, but the set of all such derived 
graphs will be the set of all B(r) graphs. Conversely, 
beginning with any B(r) graph, we may derive a 
graph by replacing one or more of its links with p(2) 
graphs. The set of all S(d graphs derived in this 

way from the set of all B(r) graphs will clearly be the 
set of all s(r) graphs. We see, in general, that two 
or more unequal but generically equivalent s(r) 
graphs can be derived from the same B(r) graph, but 
two s(r) graphs derived from generically inequiva­
lent B(d graphs must be generically inequivalent. 
Our main interest will be in the number of basically 
inequivalent s(r) graphs derived from the same 
(labeled) B(r) graph. 

The pertinence of these remarks for what follows 
arises from the fact that an expression which can 
be written as a sum of weights over the set of all 
generic s(r) graphs, can be rewritten as a sum of 
weights associated with generic B(r) graphs in which 
all possible substitutions of p(2) graphs have been 
made. In order to show that the two expressions are 
the same, we need to consider the number of basi­
cally inequivalent s(r) graphs derived from the same 
B(r) graph. In the following section we consider this 
problem. 

2. INVARIANCE GROUPS AND RELATED 
GROUPS OF GRAPHS 

The problem posed at the end of the previous 
section will be attacked by an exploration of the 
invariance groups of graphs and of some related 
groups. The necessary results will be given as lem­
mas; these are usually sufficiently obvious that only 
schematic proofs need be given. 

Since the difference between basic and nonbMic 
points of a simple graph are characterized by dis­
tinct "topological" properties of the chains con­
necting them to root points, we have immediately: 

Lemma 1. Under an i-permutation of an s(r) 
graph, basic point labels are carried into basic point 
labels and nonbasic point labels into nonbasic point 
labels. Thus, every i-permutation is the direct 
product of a permutation of basic point labels and a 
permutation of nonbMic point labels. 

From the last property, it follows immediately 
that the invariance group G(s(r») of a simple graph 
contains an invariant subgroup H(s(r») consisting 
of those i-permutations which leave the labels of 
bMic points unchanged. Now, any i-permutation 
belonging to the invariant subgroup H has by virtue 
of the "topological" connection of points belonging 
to a total i - j subgraph of s(r) the property de­
scribed by the following lemma: 

Lemma 2. An i-permutation belonging to H 
carries the labels of points belonging to a total i - j 
subgraph into points belonging to the same i - j 
subgraph. From this follows: 
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Lemma 3. The group H is the direct product of 
the invariance groups Gij of the total i - j sub­
graphs of S(,) if i and j are considered the root points 
of the total i - j subgraph. The order of the group 
H, which we denote by h(S('», is therefore equal to 
the product 7rS;; of the symmetry numbers of the 
total i - j subgraphs of S(,). 

The existence of the invariant subgroup H(S('», 
allows a separation of the elements of the group 
G(S('» into "cosets" which in turn can be regarded 
as the elements ofthe" factor group" G(S('»/ H(S('». 
Two elements of G belong to the same coset provided 
the product of one by the inverse of the other is an 
element belonging to H. The elements of H form 
one coset (which is the identity element of the factor 
group G/H) and the membership of every coset is 
equal to the order of the group H, that is h. The num­
ber of cosets f is, therefore, equal to s(S(r»/h(S('» = 

s(S('»/rrSij. The important result whose derivation 
we shall now sketch is that 

or 

(6b) 

where n is the number of basically inequivalent 
S(,) graphs obtained from p(2) substitutions in the 
derived B(') graph. 

Lemma 4. If the derived graph associated with 
the graph S(')(LI ) is the (labeled) graph B(')(I), 
then the number, n, of basically inequivalent S(,) 
graphs whose derived graph is B(')(I) is s(B('»/f, 
where f is the number of cosets of the symmetry 
group of SIr) (LI). 

Let S(')(L) be any labeled S(,) graph whose 
derived graph is B(') (1). Then 

S(r)(L) = N(L)b(L)S(')(LI), 

where N(L) is a permutation of nonbasic points 
alone and beL) is a permutation of basic points 
alone. AB L runs through all the graphs whose 
derived gaph is B(')(I), the number of distinct beL) 
will be n, because two graphs with the same beL) 
will be basically equivalent. One can see that the 
set of all beL) form a subset of G(B('», because they 
leave the derived B(') graph invariant. 

Any i-permutation, P(j), of S(,) (L I ) can also 
be written as M(j)a(j) where M(j) is a permutation 
of basic points alone. All those i-permutations P(j) 
for which the a(j) are equal will be in the same coset 
of G(S('», and conversely if a(j) ~ a(k), then P(j) 
and P(k) will be in different cosets so the number of 

distinct a(j) is f. The permutations, a, form a subset, 
A, of G(B(r». 

To show that nf = s(B('\ we will show that each 
element of G(B('» can be written as ba in one and 
only one way. Let c be any element of G(B(') (1». 
Then cS(') (L I ) has B(') (1) as its derived graph and 
thus cS(') (L I ) must be basically equivalent to 
bS(') (LJ for some b. Thus, there exists a permuta­
tion, M, of nonbasic points alone, such that 
McS(')(L1 ) = bS('>CLI) or Mb-IcS(r) (LI) = S(')(LI). 
Therefore, there exists an a such that b-Ic = a or 
c = ba, so that every element of G(B('» can be 
expressed as ba. 

Now let us assume ba = b'a' or b'-Ib = a'a-I . 
Then b'-Ib belongs to A so bHbS(') (LI) is basically 
equivalent to S(,) (LI) which implies that b'-Ib is 
the identity permutation. Thus, b' = b, which in 
turn implies a' = a, and the proof is finished. 

3. PROOF OF THE RESULT 

For our starting point, in proving that n,(r ? 3) 
can be given as an explicit functional of g or equiva­
lently of n2, we will give a form for n, which is de­
rived in reference 1: 

n,(I, ... ,r) 

= p'W,(I, ... ,r) exp [ E hm({m}; f)], (7) 
1m!';!,! 

where p is the density of particles, W is defined in 
Eq. (1), and the sum indicates that {m} runs over 
all subsets of {I, 2, ... , r} containing at least two 
numbers. The subscript m gives the number of 
labels in the set {m } . For instance, if r = 2, 

:E hm({m}; f) = h2 (1, 2; f) 

and if r = 3, :E hm({m}; f) = h2 (1, 2; f) + 
h2 (1, 3; f) + h2 (2, 3; f) + ha(l, 2, 3; f). The quantity 
h,(I, ... , r; f) is defined by 

h,(I, ... ,r; f) = E ws(,)(I, ... ,r; f), (8) 
s(r) 

where W s (') is defined in Eq. (5a), f is defined in Eq. 
(3), and the sum is over all generic S(,) graphs. 

We will change the form of Eq. (7) slightly in order 
to get rid of W" which depends explicitly on the 
potential. We see from (7) that n2(1, 2) = pI exp 
(-(3cf>12) exp [h2(1, 2; f)] so that 

n,(I, ... ,r) = p-{tt n2(i, J}) 
X exp [ E' hm({m}; f)], (9) 

Im!';I,! 

where the prime on the sum indicates that {m} runs 
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over all subsets of {I, 2, '" , r I containing at least 
three points. 

We now claim that for r ~ 3, hr(l, ... , r; f) can 
be written as an explicit functional of g. That func­
tional is 

hr(l, ... ,r; f) = B T (1, .,. ,r; G) 

= E "'BC,I(l, ... ,r; G), (10) 
B(r) 

where G is defined in Eq. (4) and the sum is over 
all generic B(T) graphs. 

An expression similar to (10) arises when one seeks 
to express exp (- (3'P12) as an explicit functional of 
the two-particle distribution function, and an at­
tempt to prove this result was the starting point for 
this paper. We have 

exp ( - 134>12) = P -2n2(1, 2) exp [-hil, 2; f)], (11) 

where 

+ L "'ECIl(l, 2; f) = N(l, 2; f) + E(l, 2; f) (12) 
B(II) 

in which the sum ENC,I is over all generic nodal 
graphs and the sum LEc,1 is over all generic ele­
mentary graphs. As explained in Ref. 3, the quantity 
N(l, 2; f) can be obtained from the integral equation 

N(l, 2; f) = N12 = P J dra (G13 - N 13)Gu , (13) 

which, by iteration, becomes 

so that N12 is an explicit functional of g. One can 
also solve for N when given G in the Fourier trans­
form space. 

The authors of the hypernetted chain paper (Ref. 
3) then state that E(l, 2; 1) can be re-expressed as 

E(l, 2; f) = B 2(1, 2; G) = E "'BC'I(l, 2; G), (14) 
B(II) 

where the sum runs over all generic B (2) graphs. Thus 
we are led back to an equation of just the form of 
Eq. (10). The only difference is that h2(1, 2; f) is 
replaced by E(l, 2; f), and this is the reason for the 
anomalous treatment of the r = 2 case in Sees. 1 
and 2. 

We will now sketch the proofs of Eqs. (10) and 
(14). Again, in order to avoid a number of paren­
thetical remarks about the r = 2 case, we make the 
convention that when an SeT) graph is referred to, it 
must also be elementary if r = 2. The two main steps 
in the proof are to show that Br(l, ... , r; G) is a 
sum of weights over all generic SC,) graphs with 
f-bonds, 

Br(l, •. , ,r; G) = Y' "'sc,l(l, ... ,r; f), (15) 
8~ 

and to show that the weighting number t(s(r» 
associated with the weight in the above formula 
is seSe,»~. 

The function G can be expressed as 

G12 = p-
2 E "'pc,l(l, 2; f), (16) 

p(:I) 

where the sum is over all generic P (2) graphs. Thus 
the set of all graphs with f-bonds contributing to B, 
must be the set of all generic S(,) graphs, for sub­
stitution of p(2) graphs in all possible ways into 
basic graphs gives the set of all generic SeT) graphs, 
and so Eq. (15) holds. 

If a graph SeT) whose derived basic graph is B(') 
were to occur only once in B T , then the test'»~ as­
sociated with the weight in (15) would be s(B(r»1rSij, 
where Sij is the symmetry number of the ijth sub­
graph of S(T). In general, however, S(,) occurs not 
just once but n times so that 

(17) 

A little reflection will show that n is just the number 
of basically inequivalent SeT) graphs associated with 
B(T) so that Eqs. (6b) and (17) imply t(S(r» = 
s(S(r» and the proof is complete. 

Since we have proved Eq. (10), we see that nr 
can be written as an explicit functional of g. For 
if we substitute (10) into (9), we obtain 

nr = P -r( Jl n2(i, J) ) 

X exp [ E' BT(l, ... ,r; G)]. 
(mIS(') 

Similarly, by proving Eq. (14), we have also proved 
that the pair potential can be expressed as an ex­
plicit functional of the pair correlation function, as 
one can see by substituting (12), (13), and (14) into 
(11). 
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The effect of a bilinear coupling in a system of degenerate modes is discussed. The normal mode 
frequencies are obtained for some simple couplings. If each mode is coupled to all the other degenerate 
modes, the maximum shift in normal mode frequency due to the coupling increases with the number 
of degenerate modes. Using the same methods, a. many-boson problem and a trunca.ted version of 
it can be compared. The energy eigenvalues have the same relationship as the exact and first-order 
perturbation excitation energies of the Bogoliubov model Hamiltonian for bosons. 

INTRODUCTION 

STRAIN field scatteringl provides an interaction 
among phonons in an imperfect crystal. Some 

of the modes may be degenerate in energy due to 
symmetries of the crystalline lattice. The degeneracy 
requires special treatment in calculations of normal 
mode frequencies using perturbation theory. 

In this work, the effect of bilinear coupling in a 
system of N degenerate modes is studied. The 
problem of determining the normal mode frequencies 
reduces to a matrix eigenvalue problem. Some cou­
plings among the phonons are assumed for which 
this eigenvalue problem can be exactly solved. The 
maximum shift in frequency due to the coupling 
increases with the number of degenerate levels. 
There is a qualitative difference in the eigenvalue 
spectrum for uniform real or complex coupling coef­
ficients. 

The solution of this matrix eigenvalue problem is 
also relevant to a many-boson system. The phonon 
problem, in position and momentum operators, is 
transformed to boson creation and annihilation oper­
ators. The quasi-particle energies of the resulting 
problem are the normal mode frequencies of the 
phonon problem. An approximation, truncating this 
Hamiltonian by neglect of terms which change the 
total number of bosons, reduces to a siInilar matrix 
eigenvalue problem. The solution of this has the 
same relation to the exact solution as an tI energy 
gap" solution has to the exact solution of the 
Bogoliubov HaIniltonian for interacting bosons.2

•
3 

Section I presents the Hamiltonians which are 
discussed and the secular equations determining 

* Present address: Department of Physics, University of 
Wisconsin, Madison, Wisconsin. 

1 P. Carruthers, Phys. Rev. 114,995 (1959); P. Carruthers, 
Rev. Mod. Phys. 33, 92 (1961) and references there. 

IN. N. Bogoliubov, J. Phys. U.S.S.R. 11, 23 (1947). 
8 K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117 

(1957). 

the normal mode frequencies. In Sec. II, these 
equations are solved approximately for some models, 
and, in Sec. III, the relation with a boson system is 
discussed. 

I. HAMILTONIANS AND EQUATIONS OF MOTION 

The Hamiltonian for a system of phonons whose 
interaction is produced by the displacements of a 
static strain field is assumed to bel

•
4 

H = L wk(atak + !) 
k 

This interaction is derived from the first anharmonic 
term in the lattice potential and is linear in the strain 
field. Wk is the energy5 of a phonon of wave vector 
k in the absence of all anharmonic interactions, with 
Wk = W-k' The summations are over wave vectors 
in the first Brillouin zone. 

C Jd is a coefficient depending on the details of the 
strain field and the anharmonic coefficients. The 
explicit form is given by Carruthersl

•
4

; general prop­
erties of C 11 which will be used are 

(2) 

a + and a are creation and annihilation operators for 
phonon modes and obey Bose commutation relations, 

(3) 

It is convenient to express H in terms of the com­
plex Fourier components of the momentum and 
position coordinates,6 

4 The interaction differs slightly from that of Carruthers 
(Ref. 1) in keeping terlllS not conserving the number of 
phonons. The form used by Carruthers is denoted by HT 
here. The Ckl used here is Carruthers' Ck,_I. 

& h = 1, m = atomic mass = 1 in the units used here. 
• See, for instance, C. Kittel, Quantum Theory of Solids 

(John Wiley & Sons, Inc., New York, 1963), Chap. 2. 
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q" = (2w"r l (a" + a~k)' (4a) 
p" = i-1(!w"rl(a_k - a~). 

These have the properties 

[qk, qd = 0, [p", pd = 0, [q", pd = i~k.I' (4b) 

In terms of these coordinates 

H = ! 2: (W~qkq-k + P"P-k) 
k 

An equation determining the frequencies of the 
normal modes is obtained by using the Heisenberg 
equation of motion twice7

: 

iq" = [qk, HJ = ip-k, 

-ijk = W!qk + 2 2: C_kl(W-""'I)l ql . (6) 
1 

If the normal model has frequency 0, 

o = (w~ - 02)q" + 2 2: C_kl(WkWI)'ql, 
1 

and the secular equation for 0 is 

det (M - 0 21) = 0 

with 

(7a) 

Mkl = W%~".I + 2C_kl (w"wI)I. (7b) 

This is the same secular equation as would be 
obtained by applying equation-of-motion methods 
to Eq. (1) to determine the quasi-particle energies 
of H. 

Since the trace of a matrix is invariant under 
unitary transformation, 

(8) 

the second sum going over all normal modes. 
It 1'1 interesting to compare Eq. (7) with the equa­

tion for the eigenvalues of a truncated version of the 
Hamiltonian H. In this truncation the terms in H 
which change the total number of bosons are 
dropped; the resulting Hamiltonian H T is 

The equation-of-motion method7 here gives 

id" = [a", HTJ = Wkak + L C-kla,. 
I 

(9) 

Thus the eigenstate energies OT are given by a 
secular equation similar to Eq. (7): 

7 D. Pines, The Many-Body Problem (W. A. Benjamin 
Company, Inc., New York, 1961), p. 44, reviews the method 
and gives references to the original papers. 

det (N - OT1) = 0; 
(10) 

Nki = W" ~k.1 + C_"I' 

This will be discussed further in Sec. III. 8 

n. DEGENERATE PERTURBATION THEORY 

The detailed solution of the secular equation for a 
physical strain field coupling is beyond the scope 
of this work. However, qualitative features of the 
effect of coupling on the energy spectrum of a system 
of degenerate modes can be obtained; some models 
will be solved in the degenerate subspace. 

In the absence of interaction, there is assumed to 
be some degeneracy in energy of the modes. The 
lowest-order effect, in perturbation theory, of the 
interaction in the degenerate modes will be treated. 9 

This is evaluated by solving the secular equation, 
Eq. (7), in the space of degenerate modes, neglecting 
coupling to other modes. These are the N degenerate 
modes of the title. 

In lowest order then, the effect of the strain field 
is given by the secular equation for the N X N 
matrix: 

(11) 

The models for which this will be solved are 
divided into constant coupling (real and complex) 
and cyclic coupling among the degenerate modes. 

A. Constant Coupling 

The general model is that each degenerate mode 
is coupled to all others with a constant strength. 
This strength is allowed to be real, imaginary, or 
complex. 

For real constant coupling, 

C_"I = {C, 
0, 

the secular equation is 

2wC 2wC 

2wC 

2wC 2wC 

k r' l, 

k = l, 

2wC 

2wC 

(12) 

= o. 

This is the determinant of a cyclic matrix. The 
matrix can be diagonalized by the unitary trans-

8 See also, A. Bardasis, D. S. Falk, and D. A. Simkin, 
J. Chem. Phys. Solids' 26,' 1269 (1965) who have used a 
uniform method for phonon"and interacting boson systems. 

g L. D. Landau and E. M. Lifshitz, Quantum Mechanics 
(Addison-Wesley Publishing Company, Inc., Reading, Mass., 
1958), Chap. 6. 
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formation1o
•
1l 

1'1 = exp [i('11-/N)(2l + 1)], 

Un = (N)-te'21rilIN, 

j, l = 0,1, .. , ,N - 1, 

l = 0,1, .,. ,N - 1, 

(13) with associated eigenvectorsl3 

(21a) 

where j and l are indices labeling rows and columns 
of the matrix. The resulting eigenvalues are 

02 = {(Jl + (N - 1)2wC, 1 mode, 

w2 
- 2wC, (N - 1) modes. 

This satisfies Eq. (8). 
For imaginary constant coupling, 

f

- iC 

C-kI = iC: 

0, 

the secular equation is 

w2 _ 0 2 i2Cw i2Cw 

-i2Cw 2 _ 0 2 i2Cw w 

-i2Cw -i2Cw 

k> l, 

k < l, 

k = l, 

Creal; 

i2Cw 

i2Cw = O. 

w2 _ 0 2 

(14) 

(15) 

(16) 

The diagonalizing transformation for this matrix 
is obtained by a generalization of the method for 
the cyclic matrix. 12 The constant antisymmetric 
N X N matrix 

A 

o 
-1 

1 

o 
1 

1 

1 

1 

-1 -1 -1 0 

(17) 

can be expressed in powers of an N X N generator 
matrix r 

as 

r= 

010 

o 0 1 0 

000 

-1 0 0 

o 
o 

1 

o 

A = r + r2 + ... + r N
-

l
• 

r satisfies the operator identity. 

rN = -1. 

Hence, the eigenvalues of rare 

(18) 

(19) 

(20) 

10 P. O. Lowdin, R. Pauncz, and J. deBeer, J. Math. 
Phys. 1, 461 (1960). 

11 P. O. Lowdin, J. Chem. Phys. 21, 496 (1953). 
12 G. G. Ball, Matrices and Tensor8 (The Macmillan 

Company, New York, 1963), Chap. 4. 

>/II = (N)-i(l, 1'1, 'Y~, ... ,'Yf- I
). (21b) 

Then the diagonalizing transformation for A IS 

Ukl = (N)-i exp [i(lr/N)k(2l + 1)], 

k, l = 0, 1, ... ,N - 1. (22) 

Since the eigenvectors of r are simultaneous eigen­
vectors of r 2

, r 3
, ••• , and rN-t, the eigenvalues 

of A are 

= i cot [(7r/2N)(2l + I)J. (23) 

Hence the roots of Eq. (16) are 

O~ = w2 
- 2wC cot [(1I/2N)(2l + 1)], 

l = 0, 1, ... ,N - 1. (24) 

The complex constant coupling is a generalization 
of this case: 

{

fY -''I' ve , 

C-kl = Ce''P, 

0, 

k> l, 

k < l, 

k = l, 

(25) 

where C is real and <p r6 0, 7r, 27r, ... . The secular 
equation is 

w2 
- 0 2 2Cwe' 'I' 2Cwe''P 

2Cwe-''I' w2 
_ 0 2 2Cwe'f' = O. (26) 

In analogy to Eqs. (17), (18), the N X N matrix 
B, 

B ~ r,~" 
e'f' e'f' e''P 

0 e''P e'f' (27a) 

e-'''' e-''P e-if' 0 

is expressed in powers of its generator g 

0 e''P 0 0 

0 0 ei'l' 0 
(27b) g= 

0 0 e'f' 

e-''I' 0 0 
18 These are column eigenvectors (right eigenvectors) of 

the generator matrix, written on one line only for com­
pactness. 
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as 

B = g + e-''I' g2 + e-2i 'l'g3 

(11), reduces to the eigenvalue problem for a cyclic 
matrix. The diagonalizing transformation,lO.ll Eq. 
(13), applied to this, gives the eigenvalues 

+ '" + e-HN- 2)'I' gN-I. (27 c) N-I 

The operator identity 

gN = [exp i(N - 2)epJl (28) 

implies the eigenvalues of g are 

01 = exp {i[ep + (2/N)(7fl - ep)J), 

1 = 0, I, '" ,N - I, (29a) 

with eigenvectors13 

XI = (N)-'(l, e-''P 01, e-·2'P o~, ... ,e-·(N-I)'I' of-I). 
(29b) 

The diagonalizing transformation for B is 

Uk! = (N)-l exp [i(2k/N)(l7f - ep)J, 

k, 1 = 0, I, .. , ,N - l. 

The eigenvalues of Bare 

= sin [ep - N- 1(ep - 7fl) J/sin N-1(ep - 7fl). 

Hence the roots of Eq. (26) are 

(30) 

(31) 

n: = 6)2 + 26)C sin [cp - N-1(cp - 7fl) J/sin N-I(ep - 7fl), 

l = 0, I, '" , N - 1. (32) 

For these three cases, the maximum shift in n2 
increases with increasing N. 

B. Cyclic Coupling 

In this paragraph it is assumed that 

C- kI = C(7k - 71) 

and 

C(7 ± N) = CH, 

(33) 

(34) 

where an integer Tk(O :::; 7k :::; N - 1) is assigned to 
each wave vector k in the degenerate subspace. The 
periodicity condition, Eq. (34), expresses an assumed 
cyclic nature of the coupling index. The dependence 
in Eq. (33) might occur if the wave-vector depend­
ence of C is primarily determined by the Fourier 
components of the strain field displacement and the 
possible wave-vector differences are multiples of a 
basic vector.14 

With these conditions, the secular equation, Eq. 

\4 An indication of the limitations on the coupling implied 
by these assumptions is that there are now only N coupling 
coefficients in the problem rather than !N(N - 1). 

n~ = ,,/ + 26) L C(k) exp (-i27fkl/N) , 
k-O 

1 = 0,1, ... , N - 1. (35) 

As an example, for a dependence C(k) 

C(k) = {C cos 27fk/N, k ~ 0 Creal, 

0, k = 0 
(36a) 

the eigenvalues are 

n~ = {6)2 + (N - 2)6)C, l = 1; 1 = N - 1, (36b) 

6)2 - 26)C, otherwise. 

An example of complex coupling is 

C(k) = iB sin 27fk/N, 

with eigenvalues 

B real, 

1

6)2 + N6)B, 

n~ = 6)2 - 2N6)B, 

6), 

1 = 1, 

1 = N - 1, 

otherwise. 

(37a) 

(37b) 

The example in Eq. (36) has strongest coupling 
for phonons of comparable index Tk and weakest for 
phonons whose 7'S are separated by half the range 
of Tk. The qualitative features of the result should 
remain for a more general cyclic coupling, if the 
coupling energy has only one oscillation in the range 
of the index. 

C. Discussion 

The examples thus far have shown a maximum 
shift in n2 which, for large N, is proportional to the 
number of degenerate modes. It is possible to give 
an example12 which does not show this behavior, but 
which indicates the feature of the examples respon­
sible for the effect. 

This example is a coupling model in which the 
degenerate phonons are coupled only to their 
It nearest neighbors" in the coupling index. This 
system has a secular equation: 

6)2 _ n2 2C 0 0 0 

2C 6)2 _ n2 2C 0 0 =0, 
0 2C 6)2 _ n2 2C 0 

0 0 2C 2 n2 6) -
(38a) 
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where C is real and is the coupling strength. The 
matrix is of the form known as a pseudo circulant 
and has the eigenvalues12 

Thus there is a correspondence between the eigen­
values of the two problems: 

(!h - w) = (02 
- w2)/2w (40) 

O~ = w
2 + 4C cos [7rl/(N + 1)], 

l = 1,2, ... ,N. 

and 0 and OT can be represented in terms of a com­
(38b) mon parameter, a, as 

Here the maximum shift in 02 is weakly dependent 
on N for large N. 

The basic feature producing the large relative 
shift, then, is the interaction with N - 1 other 
modes. The example of Eq. (36) shows this need not 
be constant in sign. However, if the coupling is suf­
ficiently limited in range, the large relative shifts 
do not occur. 

The splitting of the degeneracy in the examples 
was most pronounced in the cases when the coupling 
was complex. In these cases, 

Ck! r£. C-k,-I' 

Such an interaction can be obtained when the strain 
field does not have inversion symmetry. For com­
plex constant coupling, the degeneracy was removed 
completely. 

m. COMPARISON WITH INTERACTING BOSONS 

In Sec. I, the phonon Hamiltonian was also written 
in terms of boson operators, and a truncated version 
of this was introduced. The eigenvalues of the trun­
cated Hamiltonian H T are the solutions of a secular 
equation similar to that for the eigenvalues of H. In 
the approximation of Sec. II, evaluating the effect 
of the coupling in degenerate states, the relation 
between the problems can be made precise. 

In the same approximation as Eq. (11), the secular 
equation for the eigenvalues of H T in the degenerate 
subspace becomes the determinant of an N X N 
matrix: 

det {(w - OT) Ok,! + C-kr! = O. (39) 

Eq. (11) can be written 

det {[(w2 
- 02)/2wl Ok,l + C-k.l1 = O. (11') 

o = (w 2 + wa)i; 

OT = w + la. 
(41) 

OT has the leading terms of an expansion of 0 in 
powers of a. An analogous relation is found in treat­
ments3 of the Bogoliubov Hamiltonian2 for inter­
acting bosons. The first-order perturbation treatment 
of that Hamiltonian gives a single-particle energy 

El = Eo + !,B, 

while in the exact treatment of the model (including 
tiring diagrams"), 

E = (E~ + Eo(3) 1 , 

where Eo is the single-particle energy in the absence 
of interaction and {3 is a parameter related to the 
interaction. 

The details of Ckl have not been required to obtain 
Eq. (41). The result follows exactly, once the cou­
pling is restricted to the degenerate subspace. Eq. 
(40) can be used to obtain the energies OT from 0 2 for 
the coupling models discussed in Sec. II. 

IV. CONCLUSIONS 

The effect of coupling on the frequencies of de­
generate modes has been calculated in lowest ap­
proximation. The coupling models discussed are 
artificial but suggest a general behavior: if the cou­
pling links each mode with all others in the degen­
erate space, the maximum shift in frequency due to 
the coupling will be greater the larger the degeneracy. 

A connection has been noted between this system 
and a system of interacting bosons. Some of the 
mathematical techniques used are extensions of tech­
niques used in the theory of cyclic hydrocarbons. 11 

These connections might be useful in future work 
on these problems. 
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The Einstein field equations with incoherent matter are discussed for the case of homogeneous 
space-time, i.e., for metrics allowing a four-parametric, simply transitive group of motions. It is 
proved that the only universes satisfying the above are those of Einstein, Giidel, and Ozsvath. 

L INTRODUCTION be the differential of the map L., 

LET M be a four-dimensional Lorentzian mani- G G dL.: p ~ .p. 

fold, and let G be a group of smooth (C~) 
isometries, multiplication being written to the left A vector field X is said to be left invariant'if 

u(m) = O'm, O'EG, mEM. 

We assume, following Ozsvath,l that G acts simply 
transitively on Mj that is, given any two points, 
m, m' EM, there exists exactly one transformation 
0' E G such that O'm = m'. This implies that the 
transformation mo : G ~ M defined by 

mo(u) = umo, 

where mo is an arbitrary fixed point of M, is one-one 
and onto. Since it is a smooth map, it must be a 
diffeomorphism. This proves that we can (and do) 
identify M with the homogeneous space G. Under 
the identification map mo the transformation u E G 
becomes L. : G ~ G, where 

L.(p) = mo-1 umo(p) 

= rna -lU(pmO) 

= up; 

that is, L. is just the usual operation of left multi­
plication with u. 

M~M 

G~G 
To recapitulate, M is identified with the homoge­
neous space G, with G acting as a group of trans­
formations on itself by left multiplication. 

Let G. be the tangent plane at u E M and let dL. 

• This work supported in part by the Office of Scientific 
Research (Grant 454-65), USAF. 

t Present address: Department of Mathematics, Univer­
sity of Pittsburgh, Pittsburgh, Pennsylvania. 

1 1. Ozsvath, J. Math. Phys. 6, 590 (1965). 

dL. X(p) = X(up). 

These vector fields are completely determined by 
their values at the identity e of G, 

X(O') = dL. X(e) 

since, if we define X by the equation 

dLp X(u) = dLp dL. X(e) = dLp. X(e) = X(pu); 

that is, X is left invariant. Furthermore, if X, Y 
are both left invariant vector fields then their Lie 
bracket, 

[X, Y] = XY - YX 

is also left invariant, 

dLp [X, y]. = [dLp X, dLp Y]p. = [X, Y]p •. 

The algebra of such vector fields is said to be a 
Lie algebra. Let <I> be the set of all left invariant 
vector fields. From the above discussion, it is seen 
that dim <I> = dim G. = 4. Let e,,(a = 0, 1, 2, 3) be 
a basis for <1>. The eQ (.) will then naturally give a 
basis for G., being linearly independent. Let E"(U) 
be the dual basis for G.*; that is, each EQ is a linear 
differential form (covariant vector) and if we define 
the usual scalar product between a E G.*, X E G. 
by 

(a, X) = a,.X" = a(X), 

then 

(1.1) 

Since [e .. , ebJ E <1>, it can be written as a linear 
combination of the e .. ; that is, there exists a set of 
24 constants C\., the constants of structure, such 
that 

(1.2) 
1625 
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Any two-form {3 may be considered as a skew-sym­
metric bilinear map 

(3 : V X V -) F, 

where F(V) is the vector space of all smooth func­
tions (vector fields). We write (3(X, Y), where 
(3(X, Y) = -(3(Y, X). This is defined for a simple 
two-form c/ 1\ cl by 

at 1\ a\XlI X2) = det (ai(X;». 

In particular, if da is the exterior derivative of a, 
anyone-form, then it may be proved that 

dot (X, Y) = Xa(Y) - Ya(X) - a([X, Y]). (1.3) 

This may be proved by observing that it is fairly 
trivial if a = fdg and that anyone-form may be 
written as a linear combination of such terms, or 
equivalently, by using the tensor formalism on both 
sides of the equation. If we substitute a = eO, X = 
eb, Y = ee into Eq. (1.3), and use Eqs. (1.1), (1.2) 
then 

dea(eb' ee) = -ea(CdbCed) 

that is, 

(1.4) 

and so 

The Cartan structural equations can be written as 

dea + w\ 1\ eb 
= 0, (1.6) 

dw\ + wae 1\ w\ = -!R\ede' 1\ ed, (1.7) 

where R a
bed are the anholonomic components of the 

Riemann tensor. From Eqs. (1.4) and (1.6) 

Using the symmetries of C and r, this can be solved 
for r 

2rabe = -Cabe + Cbae + Ccab . (1.8) 

As an immediate consequence, the robe are constants 
and so 

From this and Eq. (1.7) 

(1.9) 

Equation (1.4) cannot be solved for the forms eO 
unless the integrability conditions are satisfied, 

the equations of Maurer-Cartan. that is, 
Let g be the metric on G; i.e., it is a smooth sym-

metric bilinear map 

g: V X V -)F. 

As usual, g(X, Y)~ denotes the function g(X, Y) 
evaluated at u, or the scalar product of the tangent 
vectors X, Y E G~. The condition for g to be in­
variant under the group G is that 

g(X, Y)p = g(dL~ X, dL~ Y)~p 

for all X, Y E V, u E G. This equation is equivalent 
to 

g(X, Y)p = g(X, Y)~p, X, Y, E4>, (1.5) 

since X, Yare left invariant vector fields. Defining 
gab as the component of g with respect to the basis 
{eal, 

gab = g(ea, eb), 

Eq. (1.5) reduces to (gab)p = (gab)~p; that is, dgab = O. 
If r is the Levi-Civita connection and 

then the covariant differential V g is given by 

(1.10) 

These are the Jacobi equations and are necessary 
and sufficient conditions for there to exist a group 
G with the Co be as structural constants. They are 
also the cyclic identitites on the Riemann tensor. 

Ra[bed[ == O. 

From Eq. (1.9) the Ricci tensor is 

where, following Ozsvath, we define 

Ka = r"au = -Cuau . 

In this paper we restrict our attention to those 
spaces which satisfy the Einstein field equations for 
a dust-filled universe with cosmological constant 

A = -tRaa + A, (1.11) 

where u is the momentum vector for the dust and 
the density p is given by 

p = -u.u· > o. 
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It should be noted that u is not necessarily a unit 
vector. It is, of course, timelike. We assume through­
out this paper that it is nonzero; that is p > o. 

II. JACOBI IDENTITIES 

If Eq. (1.10) is contracted with respect to a and 
d, we obtain 

The problem of finding all possible homogeneous 
universes with K nonzero has been solved com­
pletely by Ozsvath\ so we restrict our attention 
here to the case where K is zero. 

Assumption: 

K = o. (2.1) 

Since G is four-dimensional, the Jacobi identities, 
Eq. (1.10), are equivalent to 

where Eabc" is the Levi-Civita tensor density. Also, 
since antisymmetrization over more than four in­
dicies gives an identically zero expression, we have 

ElabcdC"JabC·cd = O. 

This can be expanded out to give, 

and so the Jacobi identities are equivalent to 

(ii) There exists a vector 1 such that 

1 .1 OA = 0, i.e., roAab = O. 

When A = B, Eq. (2.4) shows that each 8A is a 
simple bivector, 

OA = a A fJ (say), 

and therefore each nonzero OA defines a unique two 
plane. When A ¢ B, Eq. (2.4) shows that the dif­
ferential forms OA and OB have a common nontrivial 
factor, 

Let us suppose that condition (i) of the Lemma is 
not satisfied, so that there must exist at least three 
linearly independent bivectors, 0\ 02

, 03 (say) which 
do not have a common factor. Otherwise, the OA 
would be linearly dependent on 0\ 02

, 03 (say) which 
have a common factor p, and all the OA would contain 
this factor. Let "'\ ",2, and ",3 be the common factors 
for (02

, 03 )(03
, 01

) and (0\ 02
), respectively. The ",' 

must be distinct, since otherwise the 0' would contain 
a common factor. It is trivial that by a suitable 
normalization of the ",i we have 

Furthermore, the ,/ are linearly independent since 
if ",3 = a",l + bul, then the 0' are all proportional 
to ",1 A ",2. Now, let 1 be a unique vector for which 

",'(I) = 0 = ",'.}:' (i = 1,2,3) 

(2.2) and so 

subject to assumption (2.1). If we define the two 
forms 0" by 

1 .1 0' = 0 (i = 1,2,3). 

We use the w'(i = 1,2,3) and an independent one­
form ",4 as a basis, so that any OA can be written as 

OA = OAbcWb A "'C = O. then Eq. (2.2) can be written as 

C" A C· = O. (2.3) The equations OA A 0' = 0 now become 

We now prove the following Lemma. 

Lemma 1: Suppose that {OA : A = 1, ... ,Nl that is, 
is a set of N two-forms (in four dimensions), satisfy-
ing 

(2.4) 

Then one of the following dual conditions must be 
satisfied: 

(i) There exists (N + 1) one-forms, {P, cpA\, 
such that 

since za = l4~a4' and so the OA satisfy the second 
possibility of Lemma I. 

Comparing Lemma I with Eq. (2.3), we see that 
if K is zero then the structure constants must be 
one of the following types: 

Type A: C\c = OBlbPcll 
(2.5) 

Type B: C\.lc = o. 
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These types are considered separately in the re­
mainder of this paper. In particular, we prove in the 
next section that Type A is incompatible with the 
field equations. 

m. TYPE-A HOMOGENEOUS SOLUTIONS 

For these spaces, assumption (2.1) becomes 

(3.1) 

The field equations (1.11) are written 

(3.2) 

On contracting Eq. (3.2) with pb and using Eq. 
(1.8), (2.5), and (3.1), we obtain 

Qp + g(u, p)u = 0, 

where Q is some function of the rt band PG. 
From this, we obtain 

Lemma 2: For Type-A spaces either (i) p is time­
like and parallel to u, or (ii) p is perpendicular to 
u and therefore spacelike. 

Since p can never be null, we replace 8\ in Eq. 
(2.5) by 

8\ - (8G
cp

c/Pdpd)Pb. 

This does not change the structure constants, but 
does give 

8Gbpb = o. (3.3) 

Multiplying Eq. (3.1) by pa gives 

8"" = 0, (3.4) 

so that the tensor 8Gb is completely orthogonal to 
p, and is traceless. The field equations now become 

(S .. S")PaPb - p2(AGr S
r b + AbrSr G) 

+ AgGb + UaUb = 0, (3.5) 

where A and S are the antisymmetric and symmetric 
parts of 8, 

and are clearly both completely orthogonal to p. 
Let us first suppose that u and p are parallel, so 

that they can be taken equal (u being nonzero). 
Then, since AG.bpb = 0 and A is antisymmetric, it 
must be of rank two at most; that is, there exists a 
spacelike vector c which satisfies 

On contracting with cGc\ Eq. (3.5) gives A 0, 
and contracting with uaub then gives 

(1 + S"S")p2 = O. (3.6) 

If we choose an orthogonal base with pi eo = u, and 
3 

g(X., y) = -XoYo + L X,Y" 
i-I 

then 

SabSGb 
= L S,,2 + 2 L S,/ 2:: 0 

i i<i 

and so, from Eq. (3.6) the density p is zero which 
contradicts our original assumption. 

The other alternative was for u to be perpendicular 
to p. We choose a coordinate system in which 

gGb = diag (-1 +1 +1 +1), S12 = O. 

The last condition can be accomplished by a rotation 
in the (el, e2) plane. If Eq. (3.5) is multiplied by 
SGb and Eq. (3.3, 4) used, it follows that Soo = O. 
Collecting together the restrictions on A and S, 

Saa = AaG = Soo = SI2 = 0, 

SII = -S22 = S (say). 

The four equations corresponding to ROI , R02 , R 12 , 
and RII - R22 give 

EI == AloS - A I2 S20 = 0, 

E2 == - A 20S + A I2 S IO = 0, 

Ea == 2A12S + A 20 S IO + A IOS 20 = 0, 

E4 == AIOSIO - A 20 S20 = 0, 

since p2 =;t. O. It is trivial that 

2(E1
2 + E22) + Ea2 + E/ 

== [2S2 + (SIO)2 + (S20)2] 

X [2(A I2)2 + (AI0)2 + (A20)2] 

and so either Aab or SGb is zero. The field equations 
now become 

-AgGb = UGUb + (S"S")PGPb, 

which immediately gives that A = 0 since the right­
hand side is of rank ::; 2, and therefore, u is parallel 
to p, which is a contradiction. This completes the 
proof of the following. 

Lemma 3: There are no dust-filled homogeneous uni­
verses with Type-A structure contants. 

IV. TYPE-B HOMOGENEOUS SOLUTIONS 

The Type-B structure constants can be written 
as follows: 
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where the Levi-Civita density is chosen so that 

E0123 = +1. 

Since K is zero, cau must satisfy 

and so 

where m is some vector. If the symmetric tensor 
sob is defined by 

then the structure constants can be rewritten as 

A straightforward computation of Rob gives 

2S0bS** - 3So*Sb* 

+ l2[4So",Sb'" - 2Sob8" .. ] + loTb + lbTo 

(4.1) 

+ (lalb)[2S .. S" - (S .... )2] + Agab + UaUb = 0, 

where an asterisk denotes contraction with the vector 
1 

Sb* = Sbul", 

and A and To are defined by 

A = A + [(Sdd)212 + 3S' *S,* - 28'" S ... 12 - 28""S**), 

To = 28" .. So* - 3S .. *8"0. 

We consider the three separate cases where 1 is 
null, timelike, or spacelike. 

Lemma 4: Any spaces of Type B with 1 null must 
be either the Einstein static universe or the G6del 
cosmos. This will follow from G6del's theorem2 

(proved in Ozsvath1
) provided we can show that the 

velocity vector u is geodesic, expansion free, and 
shear free, i.e., 

U
O 'bUbotUa, U

O ,a = 0, U(a,b) = O. 

The first of these expressions follows from the field 
equations, for any dust-filled universe, whether 
homogeneous or not, and the second from K = O. 
In order to complete the proof of Lemma 4 we must 
prove that 

A coordinate system is chosen in which 

1 = e4 u = u3ea + u4e4 

2 Godel's theorem: The only dust-filled homogeneous 
universes which are expansion free and shear free are those 
of Einstein and GOdel. 

and the metric tensor is given by 

g(X, X) = (XI)2 + (X~i + 2X3X' 

so that e3 and e4 are null vectors. Since p = -2U3U4, 
neither u3 nor u4 can be zero. If the indices A, B 
range over I, 2, we obtain from the R" field equation 
(remembering 12 = 0) 

U4
2 

= S442 = S*/ > 0, 

from the R4A equations S4A = 0, from the R3A 
equations SaA = 0, and from the RAB equations 
SAB = Sll~AB. From Eq. (4.1) and the above, the 
shear may be written as 

U(o,b) = v2 SA (aEb)Aa4U3 = O. 

The remaining two cases, where 1 is timelike or 
1 is spacelike, are treated separately. In both, since 
12 ¢ 0, a multiple of 1ah can be added to Sab, without 
affecting Eq. (4.1), giving 

8** = O. 

1 timelike: Without loss of generality 1 can be taken 
as a unit timelike vector 12 = -1. We use a basis 
so that 

eo = 1. 

In the following the indices ijklm range over 1, 2, 3. 
Since Su is a symmetric 3 X 3 matrix and gii IS 

positive definite, the basis can be chosen so that 

S" = diag (AIA2A3)' 

gGb = diag (-1, +1, +1, +1), 

Si* = SiO = Ai (say). 

Since it is known that Type-A spaces cannot exist, 
it follows that the C\cEb 1\ EC cannot have a common 
factor. This easily gives the condition that 

Condition: (i) no two eigenvalues {A;} are zero; 
(li) if Ai = 0, Ai ¢ o. 

The field equations become 

-4SimS"'; + 2Si;S"'m 

+ AiA; + U,U; + Ag" = 0, (4.2a) 

(4.2b) 

2SiiS'i - (S'.)2 - 2A,A' + U0
2 - A = 

The first set gives 

o. (4.2c) 

When these are multiplied together, we have 

(AIA,Aa)2 + (UIU2U3? = 0 
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and so one of the Ai is zero, say Al = O. Then Eq. 
(4.2b) with i = 1 gives Ul = 0, since Uo ~ 0, 

U1 = Al = O. 

The remaining off-diagonal equations are 

A2A a = -U2Ua, A2A2 = UOU2, AaAa = UoUa (4.3) 

from which is deduced that 

(4.4) 

For the present, we assume that the term in 
brackets is zero, so that Eq. (4.3) yields 

(UO)2 = -A2Aa, 

(U2)2 = -(AdAa)A/, 

(Ua)2 = -(AdAa) Aa2, 

where, by an interchange of e2 and ea if necessary, 

A2 > 0 > Aa. (4.5) 

The remaining field equations give 

A22(I - A2/Aa) = 2(Al - A2)(Aa - Al - A2) 2': 0, 

Aa2(1 - Aa/A2) 

= 2(Al - Aa)(A2 - Aa - Al) 2': 0, (4.6) 

-u",u'" = 2Al2 - 2A22 - 2Aa2 - A2Aa > O. (4.7) 

From which the A i and UG can be calculated as 
functions of the Ai, provided that the inequalities 
in Eqs. (4.5)-(4.6), and (4.7) are satisfied, as well as 
the following equation on the Ai 

3A12 + A22 + Aa2 

Since the inequalities, and Eq. (4.8) are all homo­
geneous, they may be plotted in two dimensions and 
may be shown to be inconsistent. This proves that 
Eq. (4.4) has the root U2Ua = O. From Eq. (4.3) it 
will be seen that A2Aa = 0, and so A2 = 0 (say). 
From Eq. (4.3) U2 = 0, so that 

Ul = U2 = A1 = A2 = O. 

which reduces here to Ua(Al - A2) = O. Conse­
quently, we do not consider the root Al = A2 in Eq. 
(4.9) but only 

A1 + A2 = Aa, 

The field equations reduce to 

U 0
2 = 2Aa2, 

ua
2 

= - Aa
2 + 4A1A2' 

UoUa = Aa(Al + A2)' 

(4.IOa) 

(4. lOb) 

Eliminating UG from these equations, a quadratic 
equation is obtained. One root is Aa = 0, which is 
inconsistent with U0

2 > O. The other gives 

(4.IOc) 

The conditions that Aa2
, p\ uo2, and Ua2 be positive 

(or zero) give 

(4.IOd) 

where we have chosen the axes so that Al > A2' 

1 spacelike: We assume in the following that l2 = 
+ 1. The coordinate system is chosen so that 

We let the indices (ij ... n) range over (0 12) here. 
This gives a natural decomposition of SGb into a 
3 X 3 symmetric matrix S;; and a 3-vector Ai = Si3 
(remember Sa3 = S** = 0). The useful field equa­
tions reduce to 

Ri; : 4Si",S"'; - 2SiiS"' .. 

+ AiAi + U,Uj + Ag i ; = 0, (4.11a) 

(4.11b) 

Lemma 5: If S,; is a symmetric matrix satisfying 
Eq. (4.11), then Si; and gii can be simultaneously 
diagonalized. 

Sii = diag (AoAlA2)' 

gil = diag (-1 + 1 + 1). 

Proof: Consider the eigenvalue problem 

A may now be eliminated from the field equations SifXi 
= AgiiXi . (4.12) 

RIl~ and R22 giving If A is complex, then 

(4.9) 

The condition for u to be shear free and therefore 
for G to be Godel or Einstein is easily calculated to be 

{I, 2, 3}, 

xJti = 0 

and so contracting Eq. (4.11a) with XiX f gives 

\AiX'\2 + \UiXi\2 = 0 

and so u is perpendicular to Xi ( = c/ + i(3 \ so 
that both ai, (3i are spacelike. This is impossible, 
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since X is null and therefore a 2 + f32 = 0, and so S 
cannot have a complex eigenvalue. 

Now suppose that the eigenvector X is real and 
null. Contracting Eq. (4.l1a) with XiX i gives, as 
before, 

(AiXi)2 + (U;Xi)2 = O. 

As before, this implies that u .1 X which is impossible 
for u timelike, X null. Hence all eigenvectors are 
real and nonnull. 

Finally, if A is a repeated root for Eq. (4.12) then 
either there are three independent eigenvalues, or 
else there exists a vector Y such that3 

Multiplying these by Xiyi, respectively, subtracting 
one from the other, and using the symmetries of 
So and gij gives XiX i = 0, and so X is a null eigen­
vector, which is inconsistant with the field equations. 
This proves that there are three mutually orthogonal 
nonnull eigenvectors, which are used as a basis, 
giving Lemma 5. 

It is clear that the field equations are now similar 
to the previously treated case where 1 is timelike. 
The analysis is almost exactly the same, so we only 
give the results. Apart from a shear free solution, 
there are only two possible solutions 

(i) u l = U 2 = Al = A2 = 0, 

A02 = !(6AIA2 - AI2 - )..22
), 

(4.13) 
"Ao = -AI - A2, P = -!(AI

2 + A22) - 5Al)..2, 

3Al < )..2 < (3 + 2V2)AI , 

Ai = 0, (4.14) 

Theorem: The cosmological spaces given by Ozsvath I 
are a complete set of possible homogeneous dust-filled 
universes. 

Apart from the Einstein and Godel universes, 
Ozsvath gives three distinct classes of solutions, each 
of which depend on two constants. This may be seen 
to agree numerically with our results. The proof of 
this theorem consists of transforming the Ozsvath 
solutions into the canonical forms of this paper, and 
then comparing with our results. We do not do so 
here since the analysis is trivial, but messy. 

V. METRICS 

We reduce all the cosmological solutions to the 
following type: 

(dS)2 = -an w02 + a1 W12 + a2 W22 + aa Wa2, 
3 This follows from the standard analysis of SiiX i = XXi. 

where the w .. are left invariant vector fields with 
a~wb = eb (not summed) and the ab are chosen so 
that the structure constants for the w" are ± 2 or 0. 

1 timelike: 

When the cosmos is that of Eq. (4.10), the ab are 
given by 

so that 

AJAaal = AaAla2 = A1A2aa = 2, 

an = -!a l a2 Aa\ 

dwo = -WI 1\ W2, 

dW2 = W3 1\ WI, 

These equations give 

dWI = W2 1\ Wa, 

dWa = WI 1\ W2' 

Wo = dt - Wa, WI = - sin z dx + sin x cos z dy, 
W2 = cos z dx + sin x sin z dy, Wa = cos x dx + dz. 

This is Ozsvath Type 1. 4 

1 spacelike: 

For the cosmos of Eq. (4.13) or Eq. (4.14), the 
ab are given by 

AI)..2a O = -)..0)..2al = -)..0)..la2 = 2, aa = !al a2Ao', 
so that 

dw2 = -wo A WI, dwa = EWI A W2, 

where E = 1 for Ozsvath type II4 and is zero for 
Ozsvath III and Godel. These equations give 

Wo = dt + e~ dx, 

Wa = dz + EWo. 

The field equation and inequalities of Eqs. (4.10), 
(4.13), and (4.14) give 

(1) aa = a l + a2, 

(E) 

(II) 

(III) 

2aoaa = 6al a2 - al
2 

- a22
, 

a l < a2 < 3a1, 
-1 2' 

P = (4ala2aa) (10a l a2 - 3al - 3a/), 

ab = a, 

ao = a1 + a2, 

2aaao = 6ala2 - al2 
- a22

, 

3a2 < a l < (3 + V2)a2, 

p = (4aoa1a2)-1(10al a2 - 3a l
2 

- 3~2), 

aa = ao = a l + a2, 

al ~ a2 , 

p = 2ao-t, 
4 We shall refer to the Ozsvath solution of Eqs. (4.10), 

(~.13),. and (4.~4) as (I), (II), and (III), respectively. Also 
Elllstelll and Godel are referred to as (E) and (G). 



                                                                                                                                    

1632 D. L. FARNSWORTH AND R. P. KERR 

(G) as = ao = 2al = 2a2 = a, 

p = a-I. 

The maximal groups of isometries, <I>, of these metrics 
are as follows: For Ozsvath Type I <I> is 4 parametric, 
and is generated by the following Killing vectors 

(I) K4 = at, Ka = az, 
KI + iK2 = e-iz[cot y az + csc y ax + i ay]. 

The corresponding Lie brackets are [K4' K.] = 0 
and [K;, K;] = E;;kKk , i, j, k ~ 4. When M is the 
Einstein cosmos, <I> is seven-dimensional and the 
Killing vectors are the above Ka and in addition 

La = ax, 

Ll + iL2 = ei'[cot y ax + csc y 8z + i ay]. 

The additional Lie brackets are 

JOURNAL OF MATHEMATICAL PHYSICS 

[L i , L;] = EifkLk' [L i , Ka] = O. 

For the group of spaces with 1 spacelike, the isome­
try group <I> is generated by (II, III) 

Ma = ax, 

Ma = ay - x ax, 

M4 = e-u at - x ay + !V - e-2
, ax. 

G6del has one more Killing vector, 

(G) Ms = at. 

The Lie brackets are 

[M1, MaJ = 0, [M2, Ma] = -M2, 

[M" M 2] = Ma, [M" Ma] = M 4 , 

[Ms, MaJ = O. 
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. Some elementary quantization ques~ions are discussed under the hypothesis that physical space 
IS a homogeneo.us space of constant t?rsIOn. In such a space, a freely propagating point particle appears 
to have extensIOn III the sense that It obeys the Schrodinger equation of a symmetric top. Modifica­
tions of commutators and scattering amplitudes are given. The geometrical methods are based on 
the correspondence with the associated group-space. 

INTRODUCTION 

I T has often been suggested that microscopic phys­
ics depends on the astronomical neighborhood. 

It is at the same time generally believed that the 
large-scale distribution of energy-momentum is not 
important at the current level of microscopic phys­
ics, since only the metrical properties of local space­
time are so determined. On the other hand, different 
features of the local environment, such as the dis­
tribution of the baryonic charge and chirality, may 
influence the vacuum state of elementary-particle 
physics in ways which are more difficult to dismiss.1 

If these possibilities should eventually prove im­
portant, then the vacuum state would be character­
ized by certain nonvanishing expectation values, 
such as the torsion of space, which would not only 

* This work was supported by the National Science 
Foundation. 

1 See for example, T. D. Lee, Phys. Rev. 137, B1621 (1965). 

provide a mechanism for breaking the symmetry 
group but would also provide a mass scale for mi­
croscopic physics in terms of astronomically deter­
mined quantities.2 

In order to discuss some of these possibilities, we 
may consider a space described by a nonsymmetric 
affinity. If, in addition, we postulate the existence 
of a gauge group, the affinity may be separated into 
four parts, 

U~IJ = C~a{J) + Cia{JJ + G~{J + G~a{J), 
2 R. Finkelstein, J. Math. Phys. 1,440 (1960). For example 

if our universe is supposed to be a closed space of unifor~ 
torsion, and the following simple relation is assumed to 
determine the torsion, <pP: 

l<ppi ~ TO' (ih''Y"1/t), 
where the expectation value on the right side is chosen for 
the ground state, and To has the dimensions of a length, then 
assuming (i/iVt) measures the astronomically observed particle 
density, one finds that TO has possibly the order of magnitude 
",10-12 cm. 
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where ( ) and [ ] mean symmetric and antisym­
metric, while C and G mean Hermitian and anti­
Hermitian. The antisymmetric part of the affinity 
is known as the torsion. C represents the connection 
of the local Lorentz group, while G is the connection 
of the local gauge group. General relativity corre­
sponds to the situation in which there is only a 
symmetric Hermitian part, and in which there is in 
fact no gauge group in the present sense. If one makes 
the simplest generalization of relativity and puts 

U~~ = (U~a)+, 

ga{J = (g{Jat, 

then only the symmetric Hermitian and antisym­
metric anti-Hermitian parts survive, and one obtains 
a simple generalization of the theory of the Maxwell 
field interacting with the gravitational field. 3 The 
anti-Hermitian torsion, arising from the existence 
of a gauge group and associated with the possible 
existence of vector mesons, is probably the most 
interesting part of the affinity, although with it 
one runs into still unsolved quantization problems. 

In the present paper, we are not concerned with 
these gauge fields and the associated vector particles. 
Instead, we postulate the simplest possible space 
with nonvanishing torsion by making the idealiza­
tions that there is no gauge group, that the connec­
tion is real, and that the metric is real and symmetric. 
In addition, we do not quantize the connection but 
regard it as given in the same way as the flat con­
nection of Euclidean space is related to the usual 
problems of quantum theory. Our aim is to discuss 
field quantization when the three-dimensional sec­
tions are closed spaces of uniform torsion. Since 
these sections are also spaces of absolute paral­
lelism, they represent a minimal departure from the 
ordinary Euclidean case, and certainly can not be 
excluded on observational grounds. 

1. SPACE OF UNIFORM TORSION 

The space under consideration has three-dimen­
sional sections which are homogeneous and isotropic 
and are carried into themselves by a six-parameter 
group of motions; in these respects, it resembles 
Minkowski space. We shall formally characterize 
it as follows4

: 

L~{J.,(±) = 0, (1.1) 

T~{JI'Y± = 0, (1.2) 

ga{JI'Y± = 0, (1.3) 
a R. Finkelstein, Rev. Mod. Phys. 36, 632 (1964). 
4 R. Finkelstein, Ann. Phys. (N. Y.) 12, 200 (1961). 

where L~fI'Y' T~{J, and ga{J are tensors representing the 
curvature, torsion, and metric. The ± sign appear­
ing in these equations means, in every case, the 
covariant derivative with respect to the connection 
( +) and the transposed connection (-). Euclidean 
space is the particular solution for which T:{J = O. 

From (1.1)-(1.3) it follows that Ta{J'Y is completely 
antisymmetric and therefore has the representation 

T"~'Y _ aP'Y~ 
- E rp~, (1.4) 

where rp~ is an axial vector which is also constant in 
the covariant sense. Let '1'2 be the weightless norm 
ofrppo Then 

rpal~ = 0, 

andrpa is derivable from a potential: 

'1'" = g-i<pa, 

<Pa = a,,8, 

(1.5) 

(1.6) 

(1.7) 

(1.7a) 

where 8 is a scalar. The Ricci tensor is entirely deter­
mined by <Pa according to the relation: 

RaP = 2(c1}ga{3 - <Pa<P{J) 

= 2(rp2Ya{3 - grp,,'I'P), 

where '1'2 = <p2. 

(1.8) 

(1.8a) 

The vector field rpa defines a family of three­
dimensional hypersurfaces which intersect '1'" orthog­
onally. Choose an orthogonal coordinate system in 
which X4 lies along CPa at every point, and in which 
the other three axes lie in the orthogonal hypersur­
faces. Then 

rpk = 0, 

'1'4 = '1', 

k = 1,2,3, (1.9a) 

(1.9b) 

(1.10) 

We shall assume that '1'2 = - K where K > O. 
Then hypersurfaces of constant X4 are Einstein 
spaces of constant curvature and of line element 

ds2 = (dx2 + dy2 + di)/(1 + tKr2)' , 

where the radius of curvature is Ro = K-l. 

2. ABSOLUTE PARALLELISM 

(1.11) 

The given space is characterized by two kinds of 
absolute parallelism. That is, the following equations 
are integrable for the two tetrad fields A~(±): 

a"A~(±) + A~(±)L~a(±) = O. (2.1) 
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where 

(2.2) 

The )..~( +) and A~( -) tetrads may be termed (+)­
and (- )-parallel, respectively. 

Let vectors reciprocal to X~ be denoted by X!. 
Then 

(2.3a) 

and 

(2.3b) 

It is possible to describe such a space by assigning 
these tetrad fields. 2 That is, the connection and 
metric are simply calculated as follows: 

where 

x = dX and U = eiidW
• (4.1a,b) 

The d are the Pauli matrices, and w is the rotation 
of amount w about the axis W. Then, according to 
(4.1), U induces a rotation from x to x'. 

The parameters describing the rotation may of 
course be chosen differently, and we shall denote an 
arbitrary parameterization of the rotation by U(a). 
Let the composition law be 

(4.2) 

Equations (4.1) and (4.2) may be expressed in dif­
ferential form, 

L~p(±) = X~(±) iJA~(±)/iJxP, 

gaP = gi;A:(±)A~(±), 

(2.4) iJX'jiJaa 
= i(X', Aa), iJUjiJaa = iAaU, (4.3a, b) 

where 
(2.5) 

and 

[
1 0 0 0] 
o 1 0 0 

g;; = 0 0 1 O· 

o 0 0 -1 

This metric satisfies (1.3) and the tetrads are orthog­
onal with respect to it. The metric is symmetric, 
but the connection is not, and the torsion is 

T~p(±) = -21 A~(±)(iJA~(;-) _ iJA~(=;»). (2.6) 
iJx iJx 

3. GROUPS OF MOTIONS 

Since a three-dimensional section is a space of 
constant curvature, it is a hypersphere in four 
dimensions and is therefore carried into itself by 
the six-parameter rotation group 04 , We may factor 
the six-parameter group 04 into O~ X 0-;, where O~ 
describes right-handed screw motions which carry 
the A~( +) field into itself, and, similarly, O~ de­
scribes left-handed screw motions which carry the 
A~( -) field into itself. It is known that the three­
dimensional closed space of constant torsion is itself 
the group manifold of 03, and that the two groups of 
motion, O~ and 0-;, are the left and right parameter 
groups of 03 , Our method will depend essentially 
on the fact that the proposed three-dimensional 
physical space model may be identified with the 
group manifold of 03 , 

4. EQUATIONS OF THE ROTATION GROUP 

We shall write the equations of the rotation group 
in the familiar form: 

X' = UXU-', (4.1) 

Aa = -i(iJUjiJaa)U-' (4.3c) 

is subject to the following conditions of integrability: 

iJAajiJa(J - iJApjaaa + i(Aa, Ap) = O. (4.4) 

Let us introduce the complete two-dimensional 
basis (J i = (1, d) such that 

where 

Then 

i, k = 0,1,2,3, 

(4.5a) 

(4.5b) 

(4.5d) 

where Tr means one half of the trace, and CT' = CT;. 

Expand in this basis: 

X = L X'CT" (4.6) 
• 

Aa = R;;' L X:CT., (4.7) 
i 

U = L U'CT" (4.8) 
; 

where Ro is a scale factor which will prove convenient 
later. In describing only the rotation group, the 
complete basis is not needed since we take 

XO = Tr X = 0, 

A~ = Ro Tr Aa = 0, 

(4.6a) 

(4.7a) 

but the four-dimensional basis will be" useful later. 
Now, (4.3a) becomes 

(4.9) 
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where 

(4.9a) 

Similarly, (4.3b) becomes 

or 

g"l1 = R~ Tr A"A{J 

= R~Tr U:UII • 

(5.4) 

(5.5) 
ouk/aaa = (R~l)A~~;, (4.10) where 

where now (5.6) 

(4.lOa) and 

Finally, the integrability condition becomes 

a).':, _ aA~ _ ~ l' A' At - 0 
aal1 8a" Ro e,1 " II - • 

(4.11) 

These are the Maurer equations where the coeffi­
cients are the structure constants. 

The connection of the group manifold is defined 
in such a way [see (5.5)] that the above triad fields, 
defined by (4.9) and (4.10), are absolutely parallel 
and determine the torsion according to (2.6) and 
(4.11) as 

T~fJ = (R;;-l)E!,A:A;A: (4.12) 

in terms of the structure constants. 

5. THE GROUP SPACE 

The group manifold is a three-dimensional con­
tinuum which may be chosen to be a sphere of radius 
11". Then each point in the sphere is labeled by a 
vector W whose length is the magnitude of the rota­
tion, and whose direction is the axis of rotation. Let 
U a be some element of the group. The transformation 

(5.7) 

It is therefore possible to characterize the geom­
etry of the group manifold in terms of the vector 
matrix field A"'. We may also recover the scalar 
matrix function U as follows: 

where N", means an ordering in which integrands 
nearer to the origin are written to right (left). 
Then by (5.8) 

o#U = iA~(+)U, 

Op.U = iUAp.(-), 

(5.9) 

(5.10) 

as required, where Ap( +) and AI'( -) belong to left 
and right parameter groups, respectively. According 
to (5.9), however, U may depend on the path con­
necting the origin to x. However, it may be shown 
that 

U(P/) = U(P) E (P, PI), (5.11) 

(5.1) where 

maps the group space into itself by carrying the 
group element a into b. This mapping preserves the 
trace and therefore the magnitude of the rotation. 
Hence, if a point in the group space is distinguished 
by w where w measures the rotation, (5.1) will take 
a spherical shell into itself. 

On the other hand, (4.2) describes a mapping of 
the group space into itself which may not preserve 
the length of w. For example U(~) carries a1 into 
ag or V(al) carries az into ag. These mappings are 
elements of the left and right parameter groups and 
also describe motions of the group space into itself. 

The group manifold is a space of uniform torsion 
or absolute parallelism with the right (left) parallel 
fields A!( +), ().!( -» which appear in the basic 
equation (4.9) or (4.10), and from which one com­
putes the metric and connection as follows: 

g,,11 = O'iA~A~, 

L~{J = A~OfJA~, 

(5.2) 

(5.3) 

(5.12a) 

(5.12b) 

and E(p, P') is taken over a surface bounded by a 
closed path passing through the origin and x. But 
the vanishing of R[II,1 is just the integrability con­
dition, and therefore U(P) is the same as U(P') 
when this condition is satisfied. 

The preceding equations hold for both A;( +) and 
A;(-), and therefore A.,(+) and A,,(-). From 
(5.10) 

Then, 

A..(+) = -iCo",U)U-t, 

A.,(-) = -iU-1(a"U). 

g«p(-) = -R~TrCU-la"U)(U-lOfJU) 

= R~ Tr (0" U+) (o{JU) , 

(5.13+) 

(5.13-) 

(5.14-) 
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g"p(+) = -R~ Tr (a"U) U-1(a{JU) u-1 

= R~ Tr (a"u)(a{Ju+). 
(5.14+) 

By construction, gaP(±) are symmetric and there­
fore by (5.14) 

g ape +) = g ape - ) . (5.15) 

The symmetric part of the connection may be 
expressed in terms of the metric tensor in the usual 
way with the aid of the Christoffel formula. The 
torsion may be computed as follows: 

T~fJ = !x~(ax~;axp - ax~/axa) 

= iR~ Tr A~(apA" - a"Ap) (5.16) 

= -iiR~ Tr AP(A", Ap). 

6. DIFFERENTIAL OPERATORS AND 
IRREDUCmLE REPRESENTATIONS 

We define the displacement operators 

Then 

Furthermore 

(6.2) 

[X.(±) , X,(=t=)] = O. (6.3) 

Therefore the six displacement operators X.(±) 
decompose into two triplets which satisfy the com­
mutation rules of a three-dimensional angular mo­
mentum; the six displacement operators X.(±) may 
be regarded as a choice of the generators of 04 which 
factors 04 into 03 X 03 , 

We also find 

A D~m,(a) = - [j(j + l)IR~] D~",,(a), 
X 3(+) D~m.(a) = (miRa) D~m·(a), 

X3(-) D~",,(a) = (m'IRa) D~m·(a). 

(6.5) 

(6.6) 

(6.7) 

The two operators Xa( +) and Xa( -) are chosen 
from the left and right parameter groups. These 
eigenfunctions satisfy the orthogonality relations: 

(6.8) 

where d i = 2j + 1 is the dimensionality of the 
representation. In (6.8) g = Ig ... 1 and (g)idal da2 daa 
is the invariant volume element for the integration 
over the group space. Choosing j = 0, one sees that 
dj = 1 and that 

III gi da1 da2 daa = V. (6.9) 

Therefore, the constant V measures the total in­
variant volume of the group space. 

7. GREEN'S FUNCTION AND INTEGRAL 
EQUATION 

Define the following two-point function 

/(a, a') = L: jj~,,(a) D~,,(a'), (7.1) 
"'." 

where a and a' are two points in the group space 
corresponding to rotations Rand R'. Then 

piCa, a') = xi(R-IR') = sin (j + !)w/sin !w, (7.2) 

where Xi (w) is the character of the jth irreducible 
representation, and: where w is the magnitude of 
R-1R'. Then 

L: if jj~,,(a) D~"Ca') 
m,n.i 

(6.4) = L: S2i[sin (j + !)wlsin !w] = pes, a, a'), (7.3) 

or 

(6.4a) 

where Ytl~' is the second covariant derivative. There­
fore the Casimir operators of the (+)- and (-)­
groups are both 

a 
L: X i (±)2 = -A, (6.4b) 

1 

where A is the Laplace-Beltrami operator. 
The matrix elements of the irreducible representa­

tions of SU2 are the eigenfunctions of the following 
differential equations: 

where 

pes, a, a') = [1 - 2s cos iw + s2rl . (7.3a) 

In particular, 

p(l, a, a') = (4sin2 iW)-l. (7.3b) 

We now find from (7.3) and (6.8) 

D~,,(a') = (ddV) I pC1, a, a') D~ .. (a)gi da. (7.4) 

The eigenvalues of this equation are dj = 2j + l. 
The D~n(a) may be normalized as follows: 

u~ia) = Cd;! V)i D~,,(a). (7.5) 
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Then by (6.8) 

f (u~ .. (a»2g~ da = 1. (7.6) 

In terms of these normalized functions, we write 
(7.4) as 

where 

u~ .. (a') = d; J K(a', a)u~ .. (a) dT., 

K(a', a) = V-1p(a', a), 

dT. = gl da. 

Then the kernel is 

K(a', a) = E u~ .. (a')u~ .. (a)/d;, 
;m" 

and the delta function is 

o(a', a) = E u~ .. (a')u~ .. (a) 
im" 

= (V)-1 E d; D~ .. (a') D~ .. (a). 
;mA 

(7.7) 

(7.7a) 

(7.7b) 

(7.S) 

(7.9) 

(7.9a) 

We may evaluate (7.9a) with the aid of the series 
(7.3) as follows: 

o(a' ,a) = VI lim E (2j + l)l; [ sin (~j t IHW] 
,-+1 sm 2W 

= VI lim dsd (sp(s, a, a')] 
,-+1 

= llim [ (1 - S2) ] 
V ,-+1 (1 + i - 28 cos !W)2 • 

8. COORDINATE SYSTEMS 

We have been using the familiar representation: 

U = e~idW (8.la) 

= cos!w + idw sin !w. (8.lb) 

This choice (WIW2Wa) corresponds to the use of normal 
coordinates in differential geometry. The group mani­
fold is then the interior of a three-dimensional 
sphere. 

To put the group space into correspondence with 
the surface of a four-dimensional sphere write (8.la) 
as 

u = g;;l(yo + iyd). (S.2) 

Then the unitary condition requires 
3 

y~ + E y~ = R~, (8.2a) 
1 

and the group manifold becomes a closed three-

dimensional hypersurface. The four-dimensional 
rotation group which carries this hypersphere into 
itself may be factored and gives rise to the two triads 
of generators X,(±). 

In this paper, we shall work mainly with the 
representation 

u = (1 + !iR)/(1 - !iR), (8.3) 

where 

R = dr/Roo (S.3a) 

The coordinates are now r and arise from the stereo­
graphic projection of the hypersphere (8.2a) onto 
a tangent hyperplane. 

From (8.2) and (8.3) we have 

Yo = !Ro(U + U+) 

or 

(8.4a) 

and 

or 

y = r[1 + Hr2 /R~)rl . (8.4b) 

The connection between the geodesic distance w 
and the distance from the origin in stereographic 
coordinates is, of course, given by 

(8.5) 

or 

r/Ro = 2 tan tw. (S.5a) 

9. STEREOGRAPHIC COORDINATES 

Let us define a new matrix V in terms of the R 
matrix which appears in the preceding paragraph, 

V = 1 - !iR. (9.1) 

Then 

(9.2) 

and 

A a (+) = -i(oaU)U-r, A a (+) = R~IV-Io-a(V-lt, 

(9.3) 

while 

Aa( -) = R~l(V-It 0-a V-I. 

According to (5.7) the associated triads are 

A~(±) = Ro Tr Aa(±)o-'. 

(9.4) 

(9.5) 
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One finds the following useful representations of 
X;(±), 

X~( +) = Tr u'(V-I)u a(V-It, 

A~( -) = Tr u'(V-I) + U a(V-I). 

(9.6+) 

(9.6-) 

The triads may also be expressed directly in terms 
of U, 

A~( +) = ! Tr u'(U + l)u a(U+ + 1), 

A~( -) = ! Tr ui(U+ + l)u a(U + 1). 

(9.7+) 

(9.7-) 

In these formulas the Latin index may be written 
in either the covariant or contravariant position, 
but the Greek index is so far only a covariant index. 

The preceding general formulas simplify for SU2 , 

since 

(9.8a) 

We see that V is itself unitary except for G(r), the 
scale factor: 

and 

V-I = G(r)V+ 

Aa (+) = (G/Ro)(V-lua V), 

A..(-) = (G/Ro)(Vu"V- I). 

(9.8b) 

(9.9+) 

(9.9-) 

The metric may now be computed from either 
A,,(+) or Aa(-), 

g"p = R~ Tr A,,(±)Ap(±) 

= G2Tr(V- Iu"V)(V-IupV) 

and 

R~IA,,(±), Ap(±) I = 2g a (l' (9.16) 

The Greek index appearing on T may, of course, be 
raised with the aid of the metric tensor. 

We are also interested in carrying out the com­
putation of X; according to the following equations: 

and, with the aid of (9.1), find 

A~(±) = +G2 [(1 - u) o~ 

where 

u = G- I 
- 1: 

(9.17+) 

(9.17 -) 

(9.18) 

This result for X;(±) holds for stereographic co­
ordinates only. In normal coordinates we haves 

A~(±) = o~(sin w/w) + waWi(W - sin w)/w3 

± w'/w2(1 - cos W)E~ •. (9.19) 

Finally, the symmetric and antisymmetric parts 
of the connection are 

L(aP) = ig~6[ag(l6 + aga6 _ aga(l] 
axa axil axu 

(9.10) where gall is taken from (9.10); and 

In stereo graphic coordinates, therefore, the metric 
differs from its Euclidean form by only the scale 
factor G(r)2. We find 

gf = G3
, (9.11) 

ga(l = G-2 Oall' (9.12) 

We now introduce 

Ta = GU a (9.13a) 

and 

Ta = gallTfJ = G-1ua. (9.13b) 

Then 

A,,(+) = R;;-I(V-ITa V), (9.14+) 

Aa(-) = R;;-I(VTa V-I) (9.14-) 

with 

I T", Till = 2g"fJ, (9.15) 

Liall] -iR~ Tr A~(A", Ap) 

with the aid of (5.16) and (9.14); Therefore, 

T"afJ = -iG3R;;-1 Tr uiua, UII) 

= (2G3/Ro)E"p,," 

Comparing with (4.15), one also finds 

" ' " t" p _ G3 _ i 
E,tpl\al\pl\"{ - Ea{J"{ - g Ea(l'Y' 

10. INVARIANT VOLUME 

The scalar gida( = dT) in stereographic coordinates 
18 

dT = G3r2 dr dn, 

where dn is the element of solid angle. 

• D. Wenger, J. Math Phys. (to be published). 

(10.1) 
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We may also express dr in geodesic coordinates 
as follows. By (9.8) and (9.2), 

G = HI + V)(l + V-I) 
(10.2) 

= t(2 + V + V-I). 

But 

V 2 
- xV + 1 = 0, 

where X is the character of the two-dimensional 
representation. Therefore, 

G = t(2 + x) = HI + cos !w), (10.3) 

where V and R are the two-dimensional matrices of 
(8.3). Therefore, 

p(I, a, a,)-I = Tr (V - U')(U - v't (11.2a) 

in normal coordinates and 

p(I, a, a,)-I = G(R - R,)2G' (11.3a) 

in stereo graphic coordinates. With the aid of (11.3a) 
one may also write (7.4) in the stereographic form. 

D~,.(r') = (d,/V) J p(lr' - rl) D~,.(r)gi dr, (11.4) 

G = cos2 1w. (lOA) where 

By computing dG from (9.8a) and (10.3), we find 

2G2r dr = R~ sin tw dw. (10.5) 

Similarly, by computing G from these two equations, 
we obtain 

Gr = Ro sin two (10.6) 

By (10.5), (10.6), and (10.2), 

dr = tR~ sin2 tw dw dQ. (10.7) 

The total invariant volume is then 

J dr = (411"R~)(!) {r sin2 tw dw (10.8) 

(10.9) 

which is the volume of an Einstein space of radius 
Ro• 

The limit of integration is here taken as 211" rather 
than 11" in order that the radial distance in (8.5a) 
may become infinite. We are then associating dif­
ferent points in group space with the angles wand 
w + 211", and are, therefore, working with SV2 

rather than 03 , 

11. KERNEL OF INTEGRAL EQUATION 

The kernel of (7.4) is expressed in geodesic co­
ordinates by (7.3b), but w measures R-IR' and 
(7.3b) is therefore not given directly in terms of 
a and a'. Let us now express p(l, a, a') explicitly in 
terms of a and a'. 

We have, by definition of w, 

Tr V'V+ = cos tw. (1l.1) 

The preceding equation can be expressed in the 
following forms: 

Tr (V - V')(V - V'r = 4 sin2 tw (11.2) 

and 

(11.3) 

p(lr' - rl) = [G(r') Ir' - rl2 G(r)]-I 

gl = G3(r). 

(lIAa) 

(11Ab) 

[Equation (11.4) is formally identical with the equa­
tion of the Coulomb field in momentum space, where 
the momentum variables are just the sterographic 
coordinates. It is then possible to take over the 
extensive work on the Coulomb problem to con­
struct wavefunctions in the Clifford space, and con­
versely to gain some geometrical insight into the 
Coulomb problem by discussing its formulation in 
Clifford space.] 

12. FOUR-DIMENSIONAL SPACE 

The equations of Secs. 1, 2, and 9, describe a 
four-dimensional space having three-dimensional 
sections, which may be identified with the group 
manifold of the rotation group. In particular, the 
metric and connection are given in (2.5) and (2.4) 
in terms of the tetrads A!(±). The explicit form of 
the three dimensional triads is given in (9.18) and 
(9.19), and we shall now check to see if the corre­
sponding tetrads are also given by the formulas 
(4.7) or 

where 

and 

Ao = i/Ro• 

One finds 

and 

A~ = Tr Ap = 0, 

A~ = i Tr 1 = i, 

A~ = Tr (/ = 0, 

f.l = 1,2,3, 

k = 1,2,3. 

(12.1) 

(12.Ia) 

(12.lb) 

(l2.2a) 

(l2.2b) 

(12.2c) 
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The additional components of the metric, still 
given by (5.2), are 

goo = -1, gOt = o. (12.3a, b) 

Similarly, the additional components of the con­
nection, still given by (5.3), are 

L~~ = 0, L~~ = O. (12.4a, b) 

Thus the complete four-dimensional space is ob­
tained by rigid displacement of the three-dimensional 
sections in the time direction. 

13. PHYSICAL INTERPRETATION OF 
DISPLACEMENT OPERATORS 

The fundamental physical operators are deter­
mined by the group of motions of the space. The 
corresponding displacement operators are 

(13.1) 

where the fundamental triads are given in (9.18). 
Therefore, 

and 

where 

and 

(13.2) 

(13.3) 

(13.4) 

(13.5) 

(13.6) 

(13.7) 

the Tk are again stereographic coordinates. In the 
nonrelativistic approximation to the Minkowski case, 
the group generators are - (i-l)fJ/fJt, Pt, and L k , 

where the six generators representing linear and 
angular momentum are Pk and Lk • Here, to a first 
approximation, the X k (±) are the usual displace­
ment operators Pk; to terms of order R"~;t they are 
helicity operators 

Pk ± R;;ILt , 

and to terms of order I/R~ they are corrected by an 
acceleration term (A k ), because the space is curved. 
The Ak and () are identical with the acceleration and 
dilatation operators appearing in conformal rela­
tivity theories. These operators generate an algebra 
with the commutation table shown. 

At Lk () 

P; o 2i Ojk 
iEjkmP'" -iPk + 2iEjkmL'" 

0 -iE;kmA'" iAk Aj -2i Ojk 

-2iEjkmL'" 

L; 
. m 

-'/,EjkmP iEjkmAm iEjkmLm 0 

() iPk -iAk 0 0 

In the Minkowski case one may label states by 
eigenvalues of the four operators Pi and - (i-l)fJ/fJt 
which commute. Here one may use X 2(±), Xa( +), 
Xa( -), and - (i-l)fJ/fJt which also commute. 

14. SCALAR WAVE EQUATIONS OF 
FREE PARTICLES 

Let the eigenfunctions of the commuting set [X2
, 

X 3 ( +), Xa( -), - (i-l)fJ/fJt] be u~ ... Then 

X2(±)U~m' = [j(j + 1)/R~]u~m" 
Xa(+)U~m' = (m/Ro)u~m" 

Xa(-)u~m' = (m'/Ro)u~m" 

i« '-1) "/"t j j -fb'/, U U U mm' = EjUmm,. 

We may satisfy these equations by choosing 

(14.1) 

(14.2) 

(14.3) 

(14.4) 

U~m,(r, t) = A~m' D~m,(r) exp (-iEjt/h) (14.5) 

according to (6.5), (6.6), and (6.7). Then the func­
tions u~"" (r, t) take over the role of usual plane 
waves which are eigenfunctions of Pi and - (i-l)fJ/fJt. 
Unlike the plane waves, however, these functions 
are normalizable. In fact 

f I j 2 ! umm,(r, t) I g dr = 1, (14.6) 

if 

(14.6a) 

according to (6.8). 
The differential Eqs. (14.1)-(14.3) are formally 

the same as the equations of the symmetric top, 
which is characterized by two angular momenta, 
one referred to fixed axes and the other to moving, 
or body-fixed, axes. The X k(±) satisfy the com­
mutation laws of an angular momentum and may 
be put into correspondence with the fixed and 
moving axes in either way. These commute as they 
do for the top and are related by a rotation: 

(14.7) 

Even a classical point particle, without spin, 
traveling along a geodesic in a space with torsion, 
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has a turning angle associated with its motion, 
namely the turning of ).( -) with respect to ).( +). 
Quantum mechanically, a point particle without 
spin simulates in a space of constant torsion, the 
motion of an extended body with the shape of a 
symmetrical top in the way described by Eqs. (14.1)­
(14.4). The two quantum numbers, m and m', refer 
to the right- and left-handed helicity operators, 
or to the corresponding}.( +) and}.( -) triad fields. 

Equations (14.1)-(14.4) are incomplete since they 
provide no connection between the energy and the 
eigenvalues of the helicity operators. Since the pre­
sent picture is not Lorentz-invariant, the usual wave 
equation does not hold. However, we shall require 
approximate Lorentz invariance in the sense that 
the wave equation holds with the neglect of terms 
in I/Ro. The simplest assumption for the scalar 
wave equation is 

Au - (c-2) a2u/a{~ = (m~c2 /h'}u, 

which is the same as 

(14.8a) 

(14.8b) 

It is possible to satisfy (14.8) and (14.5) provided 

i A+(x, y) = 1: f"(x)f,,Cy). (15.3b) 

Normalize the f,,(x) as follows: 

fix) = (2E"r;u~m'(X, t), (15.4) 

where u~",/(X, t) is given by (14.5) and satisfies 
(14.6). Then 

~ 

-i f g! dx In(x) a~o fp(x) 

== -i f g's dx {fa(X) iJ~o ](l(x) - ]I/(x) iJ~o ! .. (x)} 

aal/ (15.5) 

and 
~ 

A aCt) = -i f gi dx A(x) iJ~o ],,(Xo), (15.6) 

which differ from the usual expressions only by the 
substitution of the invariant volume element gt dx for 
dx. However, the f .. do not have their usual meaning, 
since they are solutions of the new wave equation 

(15.7) 

that with 

(14.9) 

The energy is quantized, since the space is closed; 
but the spectrum is, of course, effectively a con­
tinuous one, since the spacing is determined by 
hel Ro, where Ro is the radius of the space. 

15. QUANTIZATION OF SCALAR FIELD 

Since the volume of space is now finite, it is un­
necessary to introduce the usual wavepackets to 
secure finite integrals. 

Let us follow the familiar procedure of expanding 
the interpolating field 

(15.1) 

where the asymptotic operators satisfy the time­
independent commutation relations 

Then 

(Afn, A:rn) = (A:ut , A:!ut) = 0"1/, 

(Afn, Arn) = (A:utl A~ut) = O. 

where the time-independent commutators are 

(15.2) 

(15.3) 

(15.7a) 

By (15.3b) and (15.4) 1 the Green's function A + (x, y) 
IS 

and 

i(a/axo - iJj()yo) A+(x, y) = 1: U~m(X)U~m(Y). (15.9) 

By (15.8) A + (x, y) satisfies (15.7) for both x and y. 
By (15.9) 

lim [i(-J- - aiJ ) A+(x, y)] 
... -v. Xa Yo 

= 1: u! .. (x, O)U!m(Y, 0) 

= a(w) , (15.10) 

according to (7.9) where w has the same meaning 
as in (7.2). 

Notice also that (15.8) may be rewritten [see 
(7.21)] as 

• A +( ) = 1. " 2j + 1 sin (2j + IHw 
t.... x, y V £..J E . 1 

i SID'iW 

. exp [-iE/t" - t.)]. (15.11) 

(15.3a) Therefore, 

with A +(x, t; y, t) = A +(y, t; x, t) (15.12a) 
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and 

6.(x, t; y, t) = 0 (15.12b) 

by (15.3a). It follows from (15.10) and (15.12) that 
6. (x, y) satisfies the same boundary conditions as 
the corresponding function in fiat space; on the 
other hand, it satisfies the wave equation (15.7) in­
stead of the Klein-Gordon equation. 

16. REDUCTION FORMULAS AND 
SCATTERING AMPLITUDES 

The scattering formulas holding now are trivially 
different from those valid in Minkowski space. 

The definition of R-products is unchanged 

R(x I Xl .,. X .. ) 

= (-~)" L 6(x - Xl) ... 6(X"-1 - X .. ) 

. [ ... [A(x), A(XI)] ... A(x .. )]. (16.1) 

One obtains in the usual way6 but with the aid of 
(15.6), 

(<l>, (R(x I Xl •• • x,,), A::'J'l1) 

i J gt dz ~ [M Of a - fa 8M] 
8zo 8zo 8zo 

= i J gl dz{M Ma - fa 6.M} + i J gi dz f"CK.M) 

with 

and 
K. = 6. - (J2j()t

2 
- m2

• 

The first integral vanishes, since Green's theorem 
holds for compact spaces: 

J gt dz (M 6.fa - fa 6.M) = 0, 

and therefore one has the usual results, e.g., 

(R(x I y), A:'nJ = iff a(z)K.R(x I yz)gl dz . 

Similarly, if one starts from 

(16.2) where 

where KzA(x) = j(x) , 

(16.2a) one obtains the scattering relations 

is the matrix element of an R-product between two [Aout(x), Ain(y)J - (A;n(x), A;n(y)J 
arbitrary normalizable states. The evaluation of the 11 
right side (16.2) continues in the usual way, but = 6.(x, x') 6.(y, y')Kz,K.,R(x', y') 
with the use of the new wave equation (15.7), so 
that . (g(x,)]i(g(y')Jl dx' dy', 

6 H. Lehmann, K. Symanzik, and W. Zimmerman, Nuovo from which the usual dispersion formulas are ob-
Cimento 6, 319 (1957). tained. 
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The main purpose of this paper is to prove, by using a simple formal procedure, the completeness of 
the set of eigenstates of a non-Hermitian operator whose resolvent satisfies certain physically 
plausible analytic properties. It is also shown how the obtained completeness relation can be related 
to the scattering solutions of the eigenvalue equation with extension to the multichannel case. All 
proofs are heuristic only. 

1. PRELIMINARY CONSIDERATIONS 

NON-HERMITIAN operators occur rather fre­
quently in the theory of nuclear reactions. 

However, their properties are scarcely investigated. 
In particular, very little is known about the com­
pleteness of the set of their eigenvectors. N everthe­
less, in certain cases, it is important to know whether 
completeness holds true or does not. 

It is the main purpose of this paper to show how 
one can prove the completeness of the set of eigen­
vectors of a non-Hermitian operator whose resolvent 
has suitable analytic properties. We shall also show 
how to relate the obtained completeness relation to 
the solutions of the eigenvalue equation of the given 
linear operator belonging to the continuous spectrum 
and satisfying outgoing- or incoming-wave boundary 
conditions. In particular, the method used is shown 
to be applicable in the multichannel case. 

The non-Hermitian operators we have in mind are 
the effective Hamiltonians which occur in the theory 
of nuclear reactions. Such operators, though non­
Hermitian, still possess features of a Hamilton oper­
ator, e.g., they contain a kinetic energy term. In 
conjecturing the analytic properties of the resolvent, 
we have been guided by the requirement that the 
considered operator be reasonable, on physical 
grounds, as an effective Hamiltonian. 

All the proofs in this paper use physicists' lan­
guage and have heuristic value only. Obviously this 
is a drawback, particularly in the present field, but 
it is not unreasonable to hope that similar results 
can be proved rigorously. 

We briefly review some properties of the resolvent 
of a self-adjoint operator. l Let H be a self-adjoint 

• Work supported in part by the Istituto Nazionale di 
Fisica N ucleare. 

1 All the properties listed below for a self-adjoint operator 
can either be found in the literature or can be easily deduced. 

linear transformation in Hilbert space, and let H = 
f~: }"dE).. When z is in the resolvent set, we take 
into account the resolvent operator 

1
+00 1 

G(z) = (zI - H)-l = -- dE)., 
_0> Z -- A 

(1) 

which is bounded and defined everywhere in the 
Hilbert space. The function (cp, G(z)if;), cp and if; 
being arbitrary elements of the Hilbert space, is 
analytic in the resolvent set. If we write 

G(z) = 1/z[I + ECz)], 

E(Z) converges strongly to zero for 1m Z ¢ 0 in the 
limit z ---7 co. For any real 1..0 , fJ.1, and fJ.2, one has 

lim (z - Ao)G(Z) = EA. -- E".-o (2) 
Z-tAo 

and 

1 jP'+o 
-lim lim -2 . d", [G(", + iE) - G(p. - iE)] 

a~o ...... 0 7iL .u1+a 

= Ep.+o -- Ep,+o, (3) 
where the limits mean strong convergence. 2 

In order to investigate the connection between 
the properties of the resolvent and the completeness 
of the set of eigenstates of a linear operator, not 
necessarily Hermitian, let us confine ourselves to a 
finite-dimensional linear vector space. In such a 
case, it is easily shown that completeness follows 
from assumptions which are an obvious generaliza-

See, for example, M. H. Stone, Linear Transformations in 
Hilbert Space, (American Mathematical Society, New York, 
1964); F. Rlesz and B. Sz. -Nagy, Functional Analysis 
(Frederic~ Ungar Publishing Company, New York, 1955); 
~. I. ~khiezer and I. M. GJazman, Theory of Linear Operators 
in Hilbert Space (Fredenck Ungar Publishing Company, 
New York, 1961). 

2 The iJ device is necessary in order to make the operators 
E>. continuous to the right if there are proper values of H 
falling on the continuous spectrum. 

1643 
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tion of some of the properties of the resolvent of a 
self-adjoint transformation. 

To be precise, the condition that the elements of 
the resolvent matrix have at most simple poles is 
necessary and sufficient for the completeness of the 
set of the eigenvectors. 

The necessity of the condition is immediate. To 
show sufficiency let us write 

(i, i = 1,2,··· n). 

These functions, by hypothesis, are analytic in the 
complex z-plane, exception made for a finite number 
of simple poles3 in general not real, at the positions 
E k • We define 

p~~) = lim (z - Ek)G,;(z). (4) 
.-.1fJ, 

Writing 

G;;(z) = 1/z[~;; + E;;(Z)], 

it follows from the definition that E;;(Z) vanishes 
in the limit as Izl goes to infinity. Let us consider a 
counterclockwise contour r which includes all poles 
of GH(z). Integrating G;;(z) over this contour, the 
Cauchy integral formula yields 

fr G,;(z) dz = 211"i ~ pl~). 

On the other hand, the same integral can be evalu­
ated by letting r go to infinity. Using the asymptotic 
behavior of G,;(z), we obtain 

fr Gi;~) dz = 211"i ~i;. 

Therefore, 

(5) 

The operators p(kl are idempotent and mutually 
orthogonal. In fact, 

"pCk')pCk) 
£.J ;; iI 
; 

lim (z' - Ek,)(z - Ek) 1: G,;(z')Go(z) 
• '-tEI;' i 
:I-+S. 

1· [Z' - Ek , PCk)] _ un, iI-
.'-B.' Z - Ek 

Besides, the operators p(k) satisfy 

HP(k) = E~(k) • 

a There are, of course, at most n poles. 

(6) 

In fact, 

L Hi;P;~) = lim {(z - Ek) .:E (H,; - z ~'i)Gil(Z) 
; ~~ i 

+ (z - Ek)zGi/(z) I = E~~~J . 

This result, together with Eq. (5), shows that 

(7) 

2. THE GENERAL CASE 

We now turn our attention to a not necessarily 
Hermitian operator H, defined in a set everywhere 
dense in the Hilbert space, assuming certain analytic 
properties for its resolvent G(z) = {zI - H)-t. 
The proof will be an extension of that given for finite 
matrices, but now it ceases to be rigorous. We make 
the following assumptions: 

(1) There exists a set everywhere dense in the 
Hilbert space such that if l{J and ift are members of it, 
the function (l{J, G(z)ift) is an analytic function of z 
with simple poles at the points Eo, not necessarily 
real, and a branch cut stretching on the real axis 
from E to + CXl, so that 

lim (l{J, G(z)ift) - lim (l{J, G(z)ift) 
..... 1I+iO _-+£-iO 

for 

= - 211"i(l{J, peE) ift), 

E5,E<+CXl. 

(8) 

(9) 

The properties of the defined operators Po and 
peE) will be discussed below. We have assumed the 
isolated singularities to be at most simple poles since, 
for finite matrices, such assumption is necessary 
and sufficient for the completeness of the eigenstates 
of H. The cut has been assumed to stretch along 
the real axis, since, in physical problems, the part 
of the Hamiltonian which survives when the particles 
are separated is self-adjoint and describes the motion 
of free particles . 

(2) There is no accumulation point for the poles 
Eo and no pole falls on the branch cut. Thus, in 
particular, lim._B (z - E)(cp, G(z)l/I) = O. The num­
ber of poles is then finite. 

(3) The function (l{J, E(Z)ift), defined through the 
equality 

(l{J, e(z)l/I) = (l{J, [zG(z) - 1]1/1), 

vanishes in the limit as \z\ -t CXl, 1m z ;6 O. 
We shall now show that, under conditions (1)-(3), 
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there exists a complete set of states belonging to 
H. Consider the integral 

I = f dz (!p, G(z)I/I), 

where the contour C = C) + C2 + C3 + C ... shown 
in Fig. 1 includes all the poles of (!p, G(z)I/I). The 
integral I can be immediately evaluated, by the 
use of Cauchy theorem, giving 

1= 21ri L (!p,Pbl/l). 
b 

On the other hand, we can compute I on the single 
paths C), C2 , Ca, and C4 • In fact, 

ic.+c.+c. dz (!p, G(z) 1/1) = L:~:' dz (!p, G(z)I/I) 

- L~~:' dz (!p, G(z)I/I) + i. dz (!p, G(z)I/I). 

We go to the limit E ~ O. In this limit, the contribu­
tion from C2 vanishes while contours C1 and C3 run 
on the real axis, one on the lower rim and the other 
on the upper rim of the cut. We then obtain 

FIG. 1. The path-C of integration. The dots 
indicate the poles Eb. 

Let US now show that 

P~(E) = P(E)Pb = 0, 

P(E)P(E') = peE) ~(E - E'). 

(11) 

f dz (!p, G(z) 1/1) = - 21ri 1'" dE (!p, peE) 1/1). 
c.+c.+c. B 

The integral over C4 is easily evaluated in the limit 
as the radius of the circle C4 tends to infinity by 
using assumption (3), giving 

The first of Eqs. (11) follows by using a procedure 
analogous to the one employed in the case of finite 
matrices. 

1 dz (!p, G(z)I/I) = 21ri(!p, 1/1). 
c. 

Collecting the results we have 

Now, !p and 1/1 being members of a set everywhere 
dense in Hilbert space, we get 

L Pb + 1'" dE peE) = I. (10) 
b E 

For the second equation we have 

- 21riP(E)P b 

= -21riP~(E) 

_ l' l' ( E ) G(E + ie) - G(z) 
-lmlIDZ- b • 

.... 0+ .... E. Z - E - ~e 

1· l' ( E) G(E - iT]) - G(z) 
- lID lID z- b • 

~ ... o+ .... E. Z - E + ~T] 

= lim Pb E + ~ E - lim Pb E .1 E = O . 
.... 0+ ~E - b ~ ... o+ - ~7J - b 

Let us now prove the third one. We have 

(2mYP(E)P(E') = lim [G(E + ie) - G(E - ie)] lim [G(E' + i7J) - G(E' - i7J)] 
E-O+ '11-0+ 

lG(E + ie) - lim G(E' + iT]) G(E - ie) - lim G(E' - iT]) 
= lim , "-:,0+ + , '-:,0+ 

.... 0+ E - 1,e - E E + ~e - E 

lim G(E' - iT]) - G(E + ie) lim G(E' + i7J) - G(E - ie)] + .... 0+ + .:1-,"'=0_+ _-=.-_____ _ 
E' - ie - E E' + ie - E _ 

= [lim G(E' + iT]) - lim G(E' - i 7J)][lim ( , + ~ _ E - E' _ ~ _ E)] = (2mYP(E') ~(E - E'). ~o+ ,"'0+ .... 0+ \jjj U ~e 
Thus we have completed the proofs of formulas (11). 
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We next prove that 

Pb(Eb - H) = (Eb - H)Pb = 0, 

P(E)(E - H) = (E - H)P(E) = O. 

In fact, we have 

Pb(Eb - H) 

= lim (z - Eb)G(z)(Eb - Z + z - H) 

(12) 

Since z = Eb is a simple pole and G(z)(z - H) = 1, 
we get Pb(Eb - H) = O. The same proof can be given 
also for the product of the factors in reversed order, 
so that the first of Eqs. (12) is established. The 
verification of the second equation is trivial using 
the identity 

lim G(z)(E - H) = lim (E - H)G(z) = I. 

Using Eq. (10) we easily get 

H = L EbPb + roo EP(E) dE. (13) 
b I n 

Therefore, Eq. (10) is a completeness relation for the 
eigenvectors of the operator H. 

We now show how to relate the completeness 
relation (10) to the solutions of the eigenvalue 
equation of the given linear operator, belonging to 
the continuous spectrum and satisfying outgoing- or 
incoming-wave boundary conditions. 

We suppose that H is the sum of two operators K 
and V, the former is self-adjoint and the latter is 
not necessarily Hermitian. The continuous spectrum 
of K is supposed to cover the interval (E, + 00). 
For simplicity, we assume that K has no discrete 
eigenvalue. In the language common to physicists, 
we write 

I da IXa)(Xal = I, (14) 

IXa) being a non-normalizable eigenvector of K be­
longing to the eigenvalue Ea. The variable· a is a 
shorthand for the eigenvalues of a complete set of 
commuting observables containing K. Let us define 
the non-normalizable eigenvectors of Hand Ht in 
terms of IXa). 

I U:) = [I + lim G(Ea + ie) Y] IXa), 
t-+O+ (15) 

IV:) = [I + lim G+(Ea - ie) Y+] IXa). 
f-+O+ 

Let us consider the integral 

-27ri r dE lim lim (G(E + ie) - G(E - il1)] 
.. B f-+O+ '1-.0+ 

= ra> dE lim lim (- i) (e + l1)G(E + iE)G(E - il1). 
J 11 E-O+ 'IJ-O+ 

Using Eq. (14) and the relations 

G(z) = Go(z) + Go(z) YG(z) = Go(z) + G(z) YGo(z) , 

where Go(z) = (z1 - K)-', we get 

-27ri ['" peE) dE = ['" dE lim (-~)(E + 11) J da G(E + ie) IXa}(xal G(E - il1) I n I n .-0+ 

We finally obtain 

,,-0+ 

= r'" dE lim (-~)(e + 11) I da [I + G(E + ie) Y] IXa)(xal [I + YG(E - il1)] J It e-O+ 
'1-0+ 

X (E + ie - Ear'(E - il1 - Earl 

= IE'" dE ~~ I da [I + G(E + ie) Y] IXa}([1 + G+ (E - il1) Y+]Xa I 
'1-0+ 

(16) 

Let us consider the linear manifold L b , range of the operator Ph. In Lb we introduce a complete set 
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{ U b, a }. Then one can define the vectors {Vb, ex } 

orthogonal to all U: and satisfying 

(Vb,a, Ub',a') = abb' aaa" 
It is easily realized that the set {U, VI is bi­
orthogonal and that 

Ph = L: jUb,a)(Vb, .. j, (17) .. 
Then, from (16), (17), and (10), one gets the com­
pleteness of such a bi-orthogonal set 

Eq, (18), of course, holds also, when substituting the 
outgoing with the incoming wavefunctions and, in 
particular, when H is Hermitian. 

The method used to obtain Eq. (16) applies also 
in the multichannel case.4 Consider, in fact, the 

'For previous consideration of this problem, see, for 
example, M. L. Goldberger and K. M. Watson, Collision 
Theory (John Wiley & Sons, Inc., New York, 1964). 

splitting of the self-adjoint Hamiltonian H pertaining 
to the cth channel, 

H = K. + V •. 

Here, V. describes the interaction between the par­
ticles of channel c, and K. is the Hamiltonian for 
these particles when they are separated and do not 
interact. The operator K. has a continuous spectrum 
starting from E., and x: is the complete set of its 
eigenvectors. Let us define the outgoing- and in­
coming-wave boundary-condition eigenvectors of H 
in terms of the vectors x:, 

"':* = [I + lim (Eo ± iE - H)-IV.]X:. 
E-+O+ 

Repeating now the procedure leading to Eq. (16) 
with the care of integrating from E. to <Xl, it is 
easily shown that the sets {"':+ I and {"':-l are 
complete in the subspace of the Hilbert space 
spanned by the eigenvectors of H whose energy is 
greater than or equal to E •. 
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The velocities of relativistic hydromagnetic waves in a compressible, perfect fluid of infinite con­
ductivity are calculated in the framework of general relativity. In the absence of viscuous and Joule 
heat losses, the flow is isentropic, and, therefore, the wave surfaces are propagated without change of 
shape. The velocities are first obtained in terms of the four-vector magnetic field and then in terms of 
the three-dimensional field. Several limiting cases are considered, and, in particular, it is shown under 
what conditions the expressions reduce to the nonrelativistic forms. Finally, the group velocities are 
calculated. The existence of a group velocity for such waves is based on the fact that the velocities 
exhibit a directional dependence. The group velocity in this case is of significance because it is the 
velocity of energy propagation, just as in the case when dispersion exists. 

1. INTRODUCTION 

THE hydromagnetic wave velocities and cor­
responding group velocities in a compressible, 

perfect fluid of infinite conductivity are determined 
in the framework of general relativity. Hydromag­
netic waves are usually defined as small amplitude 
oscillations which involve variations of the physical 
parameters from equilibrium, and furthermore, the 
wave velocities are frequency-independent. We con­
sider the propagation of such small disturbances 
in a homogeneous, perfectly conducting fluid in a 
uniform constant magnetic field. The flow is as­
sumed to be adiabatic and without dissipation. In 
the absence of dissipative losses, there is no disper­
sion in the wave velocities. However, since the veloc­
ities exhibit a directional dependence, there still 
exists a group velocity for such waves. LighthilP has 
shown by a very general argument that the velocity 
of energy propagation for a plane monochromatic 
wave in an anisotropic medium is equal to its group 
velocity. 

Various aspects of hydromagnetic waves in special 
relativity have been treated by several authors, 
among them Reichel,2 Akhiezer and Polovin,3 and 
Harris.' Bruhat6 has determined the phase velocities 
within the framework of general relativity in terms 
of total rest-mass energy and the proper-frame 

* A part of a Ph. D. thesis submitted to the Pennsylvania 
State University. 

t Presently at Clarkson College of Technology, Potsdam, 
New York. 

1 M. J. Lighthill, Phil. Trans. Roy. Soc. London 252, 397 
(1960). 

2 P. Reichel, "Basic Notions of Relativistic Hydro­
magnetics," Courant Institute of Mathematical Sciences, 
New York University, NYO-7697 (1958). 

3 I. A. Akhiezer and R. V. Polovin, Zh. Eksperim. i Teor. 
Fiz.36, 1845 (1959) [English transl.: Soviet Phys.-JETP 9, 
1316 (1959)]. 

4 E. G. Harris, Phys. Rev. 108, 1357 (1957). 
I Y. Bruhat, Astronaut. Acta 6, 354 (1960). 

magnetic field. The former condition does not re­
quire the use of the entropy form of the continuity 
equation. In our work, we write the total energy 
as a sum of rest-mass energy and thermodynamic 
internal energy, and make explicit use of the entropy 
equation. Furthermore, we obtain formulas for the 
velocities in terms of the four-vector magnetic field, 
i.e., in terms of arbitrary coordinates. Then, by a 
direct and relatively simple method, it is shown how 
the expressions may be written in terms of the three­
dimensional magnetic field. 

The wave velocities are calculated here by a 
method founded on the theory of singular surfaces 
which arises in the solution of hyperbolic differential 
equations with given Cauchy data. In the singular 
case, i.e., when no unique solution exists, the sur­
faces on which the data are given are known as 
characteristics and may be identified with wave 
surfaces.6 

We give first a brief summary of the relativistic 
macroscopic formulation of an infinitely conducting 
fluid in an electromagnetic field, and obtain the 
necessary equations from which the hydromagnetic 
wave velocities can be found. The formulation is 
based on the rationalized Gaussian system of units. 
A detailed treatment of the general equations for 
an arbitrary macroscopic fluid is given by Pham. 7 

In the following notations, Greek indices take on the 
values 0, 1, 2, 3 and Latin indices the values 1, 2, 3. 
The symbol V" denotes the covariant derivative 
with respect to the space-time coordinates x", and 
a metric of signature - 2 is assumed, with the time 
coordinate XO = ct. 

In a relativistic formulation, the four-vector elec-

8 G. Duff, Partial Differential Equations (University of 
Toronto Press, Toronto, Canada, 1956). 

7 M. Q. Pham, J. Ratl. Mech. Anal. 5,473 (1956). 
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RELA TIVISTIC HYDROMAGNETIC WAVES AND GROUP VELO CITY 1649 

tric and magnetic fields are defined, respectively, by Ga~ = (1/p.)Ha~ + [(1 - EP.)/P.) 

(1) 

where u" is the four-velocity of the fluid, whose 
magnitude is 

(2) 

The quantities H atJ and Gap are the electromagnetic 
field tensors defined by 

0 El E2 Ea 

HaP = -El 0 Ba -B2 

-E2 -Ba 0 Bl 

-Ea B2 -Bl 0 

0 Dl D2 Da 

Gap = -Dl 0 Ha -H2 

-D2 -Ha 0 HI 

-Da H2 -HI 0 

and G!p is the dual tensor defined by 

G!p = ha{J6YG6y 

with the usual definitions of f/a{J6
y and its covariant 

form, namely 

f/afHy = _ [1/( _ g)!JEa~3y, 

f/a{J8y = (- y)ItEaP8y, 

The relative tensors Ea P6y = E
aPh are zero unless 

all indices are different, in which case they are equal 
to plus one if the indices are an even permutation of 
0, 1, 2, 3, and minus one if this permutation is odd. 
The symbol g represents the determinant of the 
space-time metric tensor gap. Furthermore, the elec­
tric and magnetic induction vectors are defined, 
respectively, by 

(3) 

If the dielectric and magnetic properties of the 
medium were assumed constant, the definitions of 
the electric and magnetic four-vectors lead readily 
to a generalization of the constitutive relations 

(4) 

Because of the antisymmetric character of the elec­
tromagnetic field tensors, one can easily verify that 
these four-vectors are orthogonal to u" 

eau
a = h",ua = daua = bau" = O. (5) 

Combining (1), (3), and (4), we obtain a single 
relation involving the electromagnetic field tensors 

(6) 

In general E and p, are frequency dependent. In the 
limit of perfect conductivity, E does not enter into the 
equations and the permeability p, can be assumed 
to be unity (or very close to it). 

In a proper frame, i.e., in a frame moving with 
the fluid velocity, the four-velocity components are 
U

O = 1, u' = O. It follows that in this frame eo = 
ho = do = bo = 0, and the space components of 
the field vectors reduce to the ordinary three-dimen­
sional quantities. Since the electric field within a 
perfectly conducting medium is zero, it follows that 
e", must vanish in a proper frame. Inasmuch as e" 
is a four-vector it must vanish in all frames. Hence 

e" = HpauiJ = o. 
This expression can be taken as a definition of an 
infinitely conducting fluid. By assuming a Galilean 
metric such that 

where {3 = V
2
/C

2
, v being the three-dimensional fluid 

velocity, the vanishing of ea is equivalent to 

E + (l/c)v xB = 0, 

which is the expression one assumes in nonrelativistic 
magnetohydrodynamics in the limit of infinite con­
ductivity. Furthermore, for the infinitely conducting 
case, the connecting relation (6) clearly reduces to 

G "p = (1/ p,)H "p 

so that the second relation of (1) becomes 

h" = (1/ p.)Ht"u~. 

(7) 

(8) 

From (8) and the definition of the dual tensor, we 
obtain 

H!p = p,(h~u" - hau~). 

We also need the general Maxwell equations 

V"H"fJ* = 0, 

which in view of (10) become 

V,,(hPu" - h"uP) = o. 

(9) 

(10) 

(11) 

The general nonsymmetric energy-momentum 
tensor of the electromagnetic field is given by 

Tafl = iy"fJ(Hx.,GXY
) - H"fJG~a, 
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which in view of (7) takes the form 

T"~ = (l/p.)[iga/l(H},,,,H}'''') - H"'~H~a] 

and which is clearly symmetric. Employing the 
relation (9), Ta~ may be expressed in terms of ha. 
Thus 

Ta~ = p.(!g"~ - uaull)h}'h}' - p.h"hll. (12) 

Furthermore, with the aid of (12), (11), and the 
second relation of (5), it follows that the four-vector 
Lorentz force V aTall is orthogonal to both Ua and ha 

(13) 

(14) 

The total energy-momentum tensor of the fluid 
is taken as 

TaP = (w + p)uauP _ pgalJ + T"P, (15) 

where the first two terms constitute the mechanical 
stress tensor of a perfect fluid and T"11 is given by (12). 
The quantity p is the fluid pressure and w is the 
proper energy density. Denoting the proper mass 
density of the fluid by p, and the proper specific 
internal energy by 8, we write w as a sum of rest­
mass energy and internal energy 

component fluid and the first law of thermodynamics, 
the energy density w may be expressed in terms 
of the proper temperature and the proper specific 
entropy S. This, in conjunction with the mass 
conservation relation 

'l,,(pu") = 0, 

allows us to write (20) as 

u"'l"S = o. 

(22) 

(23) 

As would be expected the flow is isentropic. Intro­
ducing (12) in (21), we have 

(w + p + p. IhI2)ua'l"u,Il + (uau,ll - gall)'laP 

- 2p.(uaufl - !g"fl)hll V ahA + P. Ihl2 Ufl'laua 

- p.ha'l"hfl - p.hfl'l"ha = 0, (24) 

where we wrote Ihl 2 
= - h"h", since h" is spacelike. 

Differentiating the second relation of (5) results in 

h/l'l"ufl + ull'l"h/l = O. (25) 

Finally, we need an equation of state connecting 
the thermodynamic quantities, which will, in gen­
eral, be taken as 

p = pep, S) 

w = pc2 + p8. (16) and which, by differentiation, yields 

The equations of motion are given by (26) 

'l",Tail = O. (17) where 

Introducing (15) in (17) we obtain 

WUa'laUfl + uil'la(WUa) - (gall - UaUil)'laP 

+ pua'l"uP + PUIl'laU" + V "Ta~ = O. (18) 

By inner multiplication of (18) with u~ and simplify­
ing this result with the use of (13), (2), and the 
identity 

(19) 

which follows from (2) by differentiation, the re­
sultant expression is 

(20) 

Combining this result with the original expression 
(18), we have 

(w + p)u"'l "u~ - (g"~ - u"u~)'l "p 

(21) 

The scalar equation (20) plays the role of a con­
tinuity equation, whereas the four equations of (21) 
determine the world lines of flow. Assuming a single-

2. HYDROMAGNETIC WA VB VEOLCITIES 

The system of equations we need is (11), (22), 
(23), (24), and (26). For convenience we collect 
these equations here in the same order, 

hil'l"u" + ua'l"hfl - ha'lau/l - ufl'laha = 0, (27) 

ua'laP + p'lau" = 0, 

ua'laS = 0, 

(w + p + p. Ihnua'lauP + (uau,ll - gafJ)'laP 

- 2p.(u"u,Il - !g"/l)hl>.'l"h}' + fJ. Ihl2 U(J'laua 

- fJ.h"'l"hfl - fJ.hfl'l"h" = 0, 

'l"p - a
2
'laP - b

2
'l"S = o. 

(28) 

(29) 

(30) 

(31) 

Multiplication of (27) by U(J and h(J, taking into 
account (19), (5), and (2), results in, respectively, 

u"u~'lahfJ - 'laha = 0, 

Ihl2 'l"ua - uah~'l "h/l + hah/l'l"u/l = O. 

(32) 

(33) 
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Similarly, mUltiplication of (30) by Up and hp gives 

p,u"hpV"hP - P, Ihl 2 V"u" + p,uph"V"hP = 0, (34) 

(w + p + p, IhI
2
)hpu"V"uiJ 

- h"V"p 

+ P, Ihl2 V"h" = O. (35) 

The equations (27) through (35) are 15 equations 
in the first derivatives of the physical variables. 
Since these equations must hold on either side of 
a hypersurface, on which the variables and their 
derivatives may be discontinuous, we now take the 
"jump" of these equations. The jump of a quantity 
F, denoted by [Fl, is defined formally by 

[F] = lim {F(x" - A~") - F(x" + A1;")} , 
A~O 

where x" are the coordinates of a point on the 
singular hypersurface, A is some positive quantity 
and~" is arbitrary. We assume a weak discontinuity, 
i.e., the variables themselves are continuous but 
their first derivatives are discontinuous. That is 

[F] = 0, 

This is the same assumption which is valid in the 
theory of ordinary sound waves. We assume further 
that the metric tensor and its first and second partial 
derivatives are continuous 

[g"p] = [g"P.8] = [g"P.~ .. J = 0. 

Then, from the theory of singular surfaces, the above 
assumptions imply8 

[F.,,] = N" of, 
where N" are the components of the four-vector 
unit normal to the hypersurface and of is a quantity 
defined on the hypersurface and is related to the 
strength of the discontinuity. Moreover, since the 
metric tensor and its first derivatives are continuous, 
it follows that the Christoffel symbols are continuous, 
and, therefore, the jump of the covariant derivative 
is the same as the jump of the ordinary derivative. 

Taking the jump of (27) through (35) we obtain, 
in the same order, 

hfJN" aU" + L ohP - P oufJ - uPN" oh" = 0, (36) 

Lop + pN" au" = 0, (37) 

L oS = 0, (38) 

(w + p + p, IhI2)L ouP + (LuP - NfJ) Op 

- p,(2LuP - NP)h" oh" + p, Ihl2 ufJN" au" 

(39) 

8 T. Y. Thomas, Proc. Nat!. Acad. Sci. U. S. 51, 1 (1964). 

op - a2 op - b2 oS = 0, 

Lu" oh" - N" oh" = 0, 

Ihl2 N" ou" - Lh" oh" + Ph" au" = 0, 

p.Lh" oh" - p.lhl 2 N" au" + p.Pu" oh" = 0, 

(w + p + p. IhI2)Lh" au" - P op 

+ P, Ihl 2 
N" oh" = 0, 

where Land P are defined by 

L = u"N" , 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

It is necessary to distinguish between the quantities 
that characterize the undisturbed fluid and the small 
variations of these quantities. That is, when we take 
the jump of an equation, it is implied that the con­
tinuous variables are replaced by their equilibrium 
values. Multiplication of the vector equation (36) 
by N p vanishes identically. However, multiplication 
of (39) by this same quantity yields a further in­
dependent scalar equation, namely, 

(w + p + 2p. IhI2)LN" au" + (L2 _ Q2) Op 

- p.(2L2 - Q2)h" oh" - 2p.PN" oh" = 0, (47) 

where 

(48) 

We may state at this point that a knowledge of 
the quantity L allows us to calculate the wave 
velocities through the use of the following expres­
sion,9 valid in arbitrary coordinates: 

U2 = (U"f.,,)2[(U"UP - g"fJ)f."f.pr t
, (49) 

where f(x") is a function of the space-time coor­
dinates such that f(x") = 0 represents the equation 
of the singular hypersurface, and where U = V / c, 
V being the normal coordinate velocity of the wave 
surface relative to the fluid and c is the light velocity 
in vacuo. The wave surface is the two-dimensional 
surface associated with the hypersurface. This point 
is elaborated upon in a later paragraph. Since the 
components of the four-vector normal N" are pro­
portional to the derivatives f.", and since this 
formula for U is homogeneous in these derivatives, 
it is readily clear that 

(50) 

Also, since L is real it follows that the four-vector 

9 A. Lichnerowicz, Theories Relativistes de la Gravitation et 
de L' Electromagnetisme (Masson, Paris, 1955). 
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unit normal must be spacelike, i.e., Q2 = -1, in 
order for U to be less than unity. 

We now have 16 equations, (36) through (44) 
and (47), in the jumps of the derivatives of the 
physical variables. By a rather lengthy but straight­
forward process, we reduce the number of equations 
by successive elimination of the scalar products 
N aaha, haaha, uaaha, and haaua. The resulting equa­
tions are 

(Pcp(2Lu/J 
- Nt) + p. Ihl2 LQ2(Lh~ - Pu~) 

- cpL4h~} ap + p(PQ2(W - N~) 

+ (L2 - Q'}[L2h~ - P(2Lu~ - N~)]} ap 

+ LPQ2p(cp + P. Ih12
) au~ - p.p2Q2p ah~ = 0, (51) 

L(p.P~h~ - (p. Ihl2 Q2 + cpL2)Lu~} ap 

+ L2pU~(L2 _ Q2) ap + p.P2Q2p au~ 

- p.LPQ2p ah~ = 0, 

L2cp(p. Ihl2 Q2 + cpL2) ap 

(52) 

From (55'), the solution L = ° corresponds to a 
"contact discontinuity" and implies a wave surface 
moving with the fluid velocity, for in this case (50) 
yields the velocity U = 0. For the case L ¢ 0, 
as = 0, we may eliminate ap and obtain 

(A~ + ~2B~) ap + C au~ + D ahfJ = 0, (57) 

(E~ + ~2 FfJ) ap + G aufJ + H ah~ = 0, (58) 

(I + ~2 J) as = 0, (59) 

which equations yield the determinant 

A~ + .lBfJ C D 
a2 

(60) 

_ p[cpL2(L2 _ Q2) + p.p2Q2] ap = 0, 

ap - a2 ap - b2 as = 0, 

LaS = 0, 

(53) from which follows 

(54) [1 + (l/a2)J](CH - DG) = 0. (61) 

(55) Thus 

where we put 

cp = w + p = pe2 + po + p. (56) 

The two vector equations, (51) and (52), each 
yields four equations. These, together with the three 
scalar equations (53), (54), and (55), comprise a 
system of 11 equations in the 11 quantities ap, ap, 
as, au~, and ahfJ, with fJ = 0, 1, 2, 3. For a nontrivial 
solution to exist the determinant of this system must 
vanish. One may expand the resulting eleventh-order 
determinant and thus obtain the characteristic equa­
tion for L. However, a simpler procedure is as 
follows. In (51) let A fJ, B~, C, and D denote the 
respective coefficients of ap, ap, aufJ, and ah~. Sim­
ilarly, in (52), let E fJ, FfJ, G, and H denote the respec­
tive coefficients of these. same quantities, and let 
I and J represent the coefficients in (53). The equa­
tions now assume the form 

AfJ ap + BfJ ap + C a'U~ + D ah~ = 0, (51') 

E~ ap + F~ ap + G aufJ + H ah~ = 0, (52') 

1 ap + J ap = 0, (53') 

Las = 0. 

(54') 

(55') 

I + (1/a2)J = 0, 

CH - DG = 0. 

(62) 

(63) 

Introducing the values of the coefficients in these 
latter equations, we find, respectively, the charac­
teristic equations for L 

cp(cjJa2 _ p)L4 + cpQ2(a2p. Ihl2 + p)L2 

- pp.p2Q2 = 0, (64) 

(cp + p. Ih12)L2 - p.p2 = O. (65) 

We note that (64) can be derived from (53), (54), 
and (55) alone, since these equations form a closed 
system in themselves. The two vector equations 
(51) and (52) are necessary for the derivation of 
(65), from which the transverse Alfven wave velocity 
follows. With the aid of (50), the expressions (64) 
and (65) may be written in a form involving U 

[a2Q2cfJ(cfJ + p. Ih1 2
) _ pp.P2]U4 + [2pp.p2 

_ Q2cp(p + a2p. IhI2)]U2 - pp.p2 = 0, (66) 

[Q2(cp + p. Ih12
) - p.P2]U2 + p.p2 = O. (67) 

The solution of (66) yields the velocities of the 
magnetosonic waves, whereas (67) yields the velocity 
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of the Alfven waves. Thus, letting Ua represent this 
latter velocity, we have, respectively, 

if = ![a2Q2cf>(cf> + p. Ihl~ - pp.P2rl 

X I Q2cf>(p + a2p. Ihn - 2pp.P2 

± [Q4cf>2(p + a2p. Ih12)2 

+ 4pp.P2Q2cf>(cf>a2 - p)]t} , (68) 

U= = [p.p2 - Q2(cf> + p. IhI2)rlp.p2. (69) 

These expressions are valid in arbitrary coordinates 
since Ihl 2 and P are relativistic invariants. In order 
for U to be less than c we must put Q2 = -l. 
Thus, these become 

U2 = ![a2cf>(cf> + p.lhI2) + pp.p2r 11cf>(p + a2p.lhI2
) 

+ 2pp.p2 ± [cf>2(p + a2p. Ih12)2 

- 4pp.P2cf>(cf>a2 
- p)]l} , (70) 

U! = [p.P2 + cf> + P. Ihl~-1p.P2. (71) 

In the absence of a magnetic field, Ihl2 = P = 0, 
and (70) reduces to the speed of sound U. 

U: = plcf>a2 = p[a2(pc2 + pS + p)r1 (72) 

= [a2e2(1 + pSI pc2 + pi pc2)rl 

~ (a2c2)-l if pSI pc2} « 1. 
plpc2 

This limiting form we recognize as the nonrelativistic 
formula for the speed of sound. 

Moreover, putting Ihl2 = p = 0 in (53), and 
combining the resultant equation with (54) and 
(55) for the nontrivial case L ~ 0, we obtain the 
expression 

{[(a2cf>lp) - 1]L2 + Q2} 8p = O. 

For 8p ~ 0 and Q2 :::::; 0, and since L is real, it follows 
that 

(73) 

which is a restrictive relation on the equation of 
state in order for the wave speeds to be less than c. 
The equality sign corresponds formally to an in­
compressible fluid for, by putting a2 = plcf> in (64), 
the resulting equation is (65), which, as we have 
seen, yields the Alfven velocity. 

We now express the invariant P in terms of the 
three-dimensional magnetic field, which is done by 
going over to a proper coordinate system. First, 
however, we need certain relations between the 
four-vector normal to a hypersurface and its three­
dimensional velocity. These relations are readily 

obtained by an argument similar to one given by 
Synge. lO Let the equation of a hypersurface in 
Galilean coordinates be given by 

t(XO, x\ x\ x3
) = O. (74) 

For any time section XO = const, this equation yields 
a definite two-dimensional surface corresponding to 
an ordinary surface of physical space. The two­
dimensional surface for XO = XO and the correspond­
ing surface for XO = XO + dxo will be separated in 
the observer's time by an amount dt = (l/c)dxo. 
If in this time interval the surface is displaced by 
an amount dx' along its normal, the normal coor­
dinate velocity will be 

(75) 

Differentiating (74), dividing the result by dxo, and 
taking (75) into account, we have 

t.o + (lie) V't.i = O. (76) 

The second term of this expression represents the 
scalar product of Vi with the ordinary gradient of t. 
Since the normal coordinate velocity is proportional 
to this gradient, we write 

(77) 

where k is some constant and at; is the three-space 
metric tensor. Substituting (77) into (76), solving 
for k, and introducing the result back into (77), 
we obtain 

Vi = -c(aiit.d.olaHt.d.i)' 

The square of the normal coordinate speed is 
therefore, 

V 2 
= Vi Vi = -e2 [(t.o)2/aiit.d.i]' 

which may be rearranged to read 

1 _ (t.o? :of- a'it.d.i 
a"t.d.i ' 

or equivalently 

(78) 

U2 = 1 + (g afJf.at.fJ)(8'it.d.i)-\ (79) 

where U = Vic, and gafJ is the space-time metric 
tensor in Galilean coordinates 

This is as far as we need to go for our purpose. 
It might be pointed out that Eq. (49), which is 
valid in arbitrary coordinates, follows from (79) by 
choosing an orthonormal tetrad of which the time-

10 J. L. Synge, Relativity: The Special Theory (North­
Holland Publishing Company, Amsterdam, 1958), 
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like vector is the unit four-velocity, and trans­
forming the denominator in (79). It also follows 
from (79) that the four-vector normal must be 
spacelike for the wave speed to be less than e. 

The four-vector normal is defined by 

N,. = f.,.(-ga~f.af.~)-t, 

which, combined with (79), results in 

N a = f.a{1 - U2)-I( -aiif .• f.i)-t. 

Hence, in view of (78) 

No = U(I - U~-l. 

(80) 

(81) 

This result may also be obtained directly from (50) 
by setting Q2 = -1 and evaluating L in a proper 
frame. Since in a proper frame U

O = 1, u i = 0, 
it follows that L = No. Furthermore, 

Ni = -ni(I - U2)-I, 

in which the definition of n, is obvious, and rep­
resents the three-dimensional unit normal. Thus, 
with the aid of these relations we find 

P = haNa = (UhO 
- h'ni)(1 - U2)-i 

= -h .. (1 - if)-l, (82) 

since hO vanishes in a proper frame. The quantity 
h .. = hin, is the component of the three-dimensional 
magnetic field vector normal to the wave surface. 
In the above expressions and in those that follow, it 
is assum.ed that U ¢ 1. 

The introduction of (82) in (66) yields a sixth­
degree equation from which the quantity (1 - U2

) 

can be factored out, with the result that 

a2Q2t/J(t/J + p. /h/2)U' 

+ [pp.h! - Q2cf>2(p + a2p. /h/2)]U2 - pp.h! = O. (83) 

Similarly, (67) becomes 

Q2(cf> + P. Ih12)U2 + p.h! = O. (84) 

The solutions of (83) and (84) with Q2 = -1 are, 
respectively, 

U2 = [2a2cf>(cf> + p. IhI2)rl{pp.h! + t/J(p + a2p. Ihl~ 

± [(pp.h! + t/Jp + a2cf>p. /h/2)2 

- 4pp.h!a2cf>(cf> + p. Ih/~]t}, (85) 

U! = p.h!/(t/J + p. IhI2), (86) 

where again we wrote Uo for the Alfven velocity, 
and which, in view of the defining relation (56) 
for cf>, becomes 

U! = p.h!/(pe2 + pc, + p + p. /h/~ ~ p.h!1 pe2. (87) 

This last result represents the nonrelativistic limit, 
if the internal energy, fluid pressure, and magnetic 
energy are much less than the rest-mass energy. 

We may write (86) in the form 

U: = (U.,( .n)2, 

where 

U.,( = h[p./(cf> + p. IhI2)]i, (88) 

and is the velocity of an Alfven wave traveling 
along the direction of the magnetic field. Since 
h! = /h12 cos 8, 8 being the angle between nand h, 
the magnetosonic velocities (85) may be written as 

U2 
= UU! + cf>(cf> + p. IhI2)-IU! + U!U! cos2 8] 

± il [U! + t/JU!(t/J + p. IhI2)-1 

+ U!U! cos2 8]2 - 4U!U! cos2 8}t. 

If h.. = 0, the nonzero solution of (85) is 

U2 = (p + a2p. /h/2)la2(cf> + p. /hI2) 

= U! + U!cf>I(cf> + p. /hI2
). 

(89) 

(90) 

Again, in the limit when the rest-mass energy pre­
dominates and p. /h12 « t/J, then 

t/J/(cf> + p. Ih12
) ~ 1, 

U! ~ (ac2)-I, 

U! ~ p. Ihl 21 pe2, 
(91) 

and if, moreover, we neglect terms of order I/e2 

or smaller with respect to U.,( and U., the expres­
sions (89) and (90) assume their nonrelativistic 
values 

U2 ~ ilU! + U: ± [(U! + U!)2 

- 4U!U! cos2 8]t}. (92) 

if ~ U! + U!, (93) 

with the understanding that, in these approximate 
forms, UA and U. are the nonrelativistic values (91). 

It might be noted that, in the usual problems of 
nonrelativistic magnetohydrodynamics, the displace­
ment current is neglected, since it yields a small 
correction of order I/e2

• In a relativistic treatment, 
however, the displacement current is automatically 
taken into account when the Maxwell equations are 
cast in covariant form. Therefore, the nonrelativistic 
expressions given here, namely, the Alfven velocity 
in (91), and the expressions (92) and (93) are those 
resulting from the neglect of the displacement cur­
rent, since they were derived by neglecting terms of 
order I/e2

• 
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Finally, we classify the wave velocities according or 
to their relative magnitudes. Manipulating Eq. (83) 

(97) 
we observe that it can be written as 

(rr - U!)(rr - U!) 

= p(lhl' - h!)(a2rp - p)if/a2rp(rp + I' IhI2
), (94) 

with U! and if. given by (86) and (72). Inasmuch 
as a2rp ;?: P and Ihl 2 ;?: h!, it follows that the right 
member is a positive quantity. Denoting the larger 
and smaller of the roots of this equation by Ufa • t 

and U.1ow, we deduce that 

where 

a' = pp.fa2rp(rp + I' IhI2
), 

(32 = rp(p + a2p IhI2)/ PI'. 

(98) 

Equation (97) is a quartic of the form x· + qxJ + 
r = O. Its solution may be written as 

The solution of (97) is therefore 

The upper and lower values correspond to the posi- ± [a2(h! + (32) _ 2ah,,]il, (99) 
tive and negative sign options, respectively, of (85). 
Thus, the relativistic sound and Alfven velocities which, in terms of wand k, becomes 
have magnitudes between the fast and slow mag-
netosonic waves, just as in the nonrelativistic case. w/e = ±!{[a2(h·k)2 + a2{32k' + 2akh.k]i 

3. GROUP VELOCITIES ± [a2(h·k)2 + a2
{32k

2 
- 2akh·k]i}. (100) 

Denoting by k and w as the propagation vector and 
circular frequency, respectively, the magnitude of 
the wave or phase velocity is w/k, and the group 
velocity is given by CJw/CJk. Since k = kn, n being 
the normal to the wave front, hence h" = h·n = 
h·k/k. Furthermore, 

U = V /e = (l/e)(w/k). 

Making these substitutions in (86), the Alfven wave 
velocity may be written as 

and the group velocity is found to be 

(95) 

The scalar product of this with n yields 

(96) 

Thus, the Alfven group velocity is along h and its 
component along the propagation direction is equal 
to the phase velocity. 

The group velocity of the magnetosonic modes 
(85) may be found in a similar fashion. However, 
it is more convenient to start with (83). With 
Q2 = -1, (83) may be written in the form 

U· - [a2rp(rp + I' IhI2)rl[pph! + (p + a2p IhI2)rp]U2 

+ pph![a2rp(rp + A')r1 = 0, 

Taking into account the fact that k2 = k· k, the 
group velocities in terms of n are 

~ :: = ±il[(a2h! + a)h + (ah .. + a2
f)n] 

X [a2(h! + {l) + 2ah .. r i 

± [(a2h! - a)h - (ah" - a2{3')n] 

X [a2(h! + (32) - 2ah .. r l }. (101) 

One can show that the scalar product of (101) with 
n results in (99), so that, as in the case of the 
Alfven wave, the component of the magnetosonic 
group velocity in the direction of propagation is 
equal to the phase velocity. 

We consider two special cases of (101). If h = 0, 
(101) reduces to 

(102) 

which is the group velocity of sound and is identical 
to the phase velocity, as would be expected, since 
the speed of sound is the same in all directions for 
the fluid being considered. 

If h" = 0, then (101) reduces to 

[(p + a2p IhI 2)/a2 (rp + I' Ihl')]ln, (103) 

which is equal to the phase velocity (90). Thus, 
the phase and group velocities of this particular 
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mode are identical, as might be expected, since this 
velocity mode is independent of hn• Equation (103) 
may also be derived directly from (90). 

In the case when the rest-mass energy is much 
greater than the internal energy, the magnetic 
energy, and the pressure, we have 

2", / 24 a-Jl.pac, 

(i{32 ~ 1/a2c2 + p.\hI2/pe2. 

Thus, if in (101) we neglect the terms involving a2 

(not the terms involving the product a2(32) we obtain 
the nonrelativistic limit 

JOURNAL OF MATHEMATICAL PHYSICS 

~ :~ ~ ±tl[ah + (ah" + a:{3~nJ[a2{32 + 2ah .. r i 

± [-ah - (ah,. - a2f)nJ[df - 2ah"ri } 

with the understanding that a and {3 are now the 
approximate forms above. 
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A heuristic discussion is given of the preparation of states in finite space-time regions. Some axioms 
concerning such states are derived from this discussion. It is shown that states requiring for their 
preparation a selection of events according to the outcome of a measurement will not be "strictly 
local." Nonselective states will, however, be "strictly local." The mathematical structure of such 
states is investigated. 

1. INTRODUCTION 

A. Motivation 

THE following is an analysis of the preparation 
of states in finite space-time regions. We at­

tempt to derive the local properties of such states. 
It is felt1

•
2 that this will eventually yield information 

concerning the rings3
•
4 generated by the local ob­

servables. 5
-

7 

This in a sense is an investigation into the quan­
tum theory of measurement. It differs from the usual 

* An earlier version of part of this article was circulated as 
an N. O. L. preprint entitled, "Local States," in 1964. 

t Presently at The Institute for Advanced Study, 
Princeton, New Jersey. 
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mode are identical, as might be expected, since this 
velocity mode is independent of hn• Equation (103) 
may also be derived directly from (90). 

In the case when the rest-mass energy is much 
greater than the internal energy, the magnetic 
energy, and the pressure, we have 

2", / 24 a-Jl.pac, 

(i{32 ~ 1/a2c2 + p.\hI2/pe2. 

Thus, if in (101) we neglect the terms involving a2 

(not the terms involving the product a2(32) we obtain 
the nonrelativistic limit 

JOURNAL OF MATHEMATICAL PHYSICS 

~ :~ ~ ±tl[ah + (ah" + a:{3~nJ[a2{32 + 2ah .. r i 

± [-ah - (ah,. - a2f)nJ[df - 2ah"ri } 

with the understanding that a and {3 are now the 
approximate forms above. 
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originally assumed to be generated by smoothed 
polynomials in the field operators. The properties of 
these rings can, however, be formulated independ­
ently of the existence of any field operator. 

Here we assume only that the ring R(a) is gen­
erated by the observables in a, without specifying 
exactly what these observables are. We do expect 
that these observables will eventually be determined 
by the analysis of local experiments. Among these 
observables there may be some that lead to the 
notion of a field operator, but we do not feel that it 
is necessary here to require this. 

B. Historical 

1. N ewton-W igner States 

In the work of Newton and Wigner/o the vector 
states 1/;., for all three-vectors a, are said to be 
localized at the points a if, among other things, 

(1/;., 1/;b) = 0, for a ~ b. 

This kind of localized state represents a physical 
situation in which some condition is known to hold at 
the point a, and also known not to hold at all other 
points. Such a state could in practice be set up only 
by an infinite physicist, who would be able to ex­
amine all of space at a fixed time. 

In the following we wish to examine those states 
that may be set up by a finite observer. For such 
an observer, there is some bounded region a which 
he may examine, and an infinite region surrounding 
a which he may not. It is conceivable that he may 
be able to set up some states that look like the 
Newton-Wigner states within a. Here, however, we 
are concerned with the properties of the set of all 
states that he may prepare, @S(a), as seen from both 
inside and outside a. 

2. The Reeh-Schlieder Theorem 

A naive point of view would be to say that a state 
in @5(a) could be obtained by letting an operator 
from R(a) act on the vacuum vector n, and that 

@5(a) = R(a)n. (1.1) 

However, the following lemma leads to an immediate 
paradox. 

Lemma 111
,12: (The Reeh-Schlieder theorem) If a 

10 T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 
400 (1949); A. S. Wightman, ibid. 34, 845 (1962). The strict 
orthogonality condition for such states is dropped in: T. O. 
Philips, Phys. Rev. 136, B893 (1964); S. Schlieder, Commun. 
Math. Phys. 1, 265 (1965). 

11 H. Reeh and S. Schlieder, Nuovo Cimento 22, 1051 
(1961). 

12 Reference 6, p. 57, Satz (10.2). 

contains an open region, then 

strong closure (R(a)n) = H, 

where H denotes the Hilbert space. 

This lemma, although originally proved on the 
basis of field theory, 11 does not depend on the exist­
ence of a field, and has also been proved on the basis 
of the general ring axioms of Sec. 2.12 

If Eq. (1.1) were to be true, then this lemma tells 
us that an observer in the region a, using an ap­
paratus located entirely in a, could construct a 
state that was arbitrarily close to any state what­
soever. In particular, he could construct a state in 
which there was essentially nothing present in a, but 
with an arbitrarily large disturbance present 10 
light years away from a in a spacelike direction. We 
conclude that Eq. (1.1) cannot be true. 

It is shown in Theorem (4) below that, in principle, 
the expectation value of any given local operator 
in any vector state can be computed from measure­
ments made in the vacuum. In a sense then, any 
state is physically producible from the vacuum. The 
physical process needed is, however, not simply a 
multiplication of the vacuum by an operator. It is 
seen below that the above objection to Eq. (1.1) 
does not apply to this process. 

3. Strictly Localized States 

It has been suggested that @5(a) should consist 
of only "strictly localized" vector states.l,la A unit 
vector 1/; is said to be strictly localized in a if for all 
operators A E R(a'), where a' denotes the spacelike 
complement of a, 

(1/;, A1/;) = (n, An). (1.2) 

The intuitive justification for this is the following: 
(a). If a state has been prepared by an observer 

in a, then this should have no effect on measurements 
in a'. An observer in a' should then obtain the same 
values for a measurement of an operator as if no 
state had been prepared anywhere. 

(b). If no state has been prepared anywhere, 
then it is felt that the expectation value for the 
measurement of an operator B should be (n, Bn). 

Assumption (a) can be expected to be true only 
for what we call in Sec. 3A "nonselective" states. It 
will not be true for" selective" states. 

Assumption (b) essentially says that the "back­
ground" state in which the experiment takes place 
is the vacuum vector state. There are certainly many 
experiments in which the vacuum is a good approxi-

13 J. M. Knight, J. Math. Phys. 2, 459 (1961). 
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mation to the actual background. There are many 
in which it is not. We discuss in the following both 
the general case of an arbitrary background and 
the particular case of a vacuum background. 

C.Summary 

Section 2 lists the relevant assumptions made 
concerning local rings. Local states are discussed 
heuristically in Sec. 3. Their mathematical properties 
are investigated in Sec. 4. 

The various stages of a local experiment are dis­
cussed in Sec. 3A. The effects of the locations of the 
regions of state preparation and measurement are 
discussed in Sec. 3B. In Sec. 30 we make certain 
assumptions concerning the average values. The 
various methods of composing states are covered in 
Sec. 3D. 

In Sec. 4A, Gleason's theorem is used to show 
that these states must correspond to density ma­
trices. Theorem 1 in Sec. 4B then gives the particular 
density matrix structure appropriate to a pure selec­
tive state. 

Certain assumptions are made about a particularly 
ideal background, the uniformly empty background, 
in Sec. 40. In Theorem 2 it is shown that these as­
sumptions imply that this background is the vacuum 
vector state. 

The structure of nonselective states prepared in 
the presence of the vacuum is then given by Theorem 
3, in Sec. 4D. 

Theorem 4 in Sec. 4E gives a physical procedure 
for approximating to any state in any region. This 
leads, in Sec. 4F, to Theorem 5, which gives the struc­
ture of nonselective states prepared in the presence 
of an arbitrary background. 

2. RINGS 

Unless otherwise specified, each space-time re­
gion a considered below is assumed to be such that 
both a and a' contain open regions. The algebra 
R(X), where X denotes all space-time, we assume 
to equal L(H), the ring of all bounded linear opera­
tors on H. Following Araki,t4 we assume 

R(a) :> R(f:1), if a:> (j, (2.1) 

where a could be X here. 
There exists a unitary representation U(a, A) 

of the inhomogeneous orthochromous Lorentz group 
It such that 

U(a, A)R(a)Ut(a, A) = R(Aa + a). (2.2) 

The usual spectrum conditions are also as-

1. Reference 6, Sees. 7 and 8. Ref. 7, assumption (a.). 

sumed. 14.16 In particular, we assume the existence 
of a unique vacuum vector n E H such that 

U(a, A)n = n. (2.3) 

Spacelike operators are assumed to commute. That 
is, 

R(f:1) C R'(a) if (j C a', (2.4) 

where R' denotes the commutant of the ring R. 
Each R(f:1), where (j may be unbounded, is as­

sumed to be generated by the RCa,) for a, bounded 
and contained in {j. That is, let {ai' i = 1, 2 ... } 
be a partitioning of {j by bounded sets ai, i.e., 
{j = V7.1a ,. 

Then 

{ ... }" R(f:1) = ~ RCa,) • (2.5) 

There exists a representation (T(a, A) of If such 
that 

u(a, A)~(a) = ~(Aa + a). (2.6) 

We also make the following postulate. 

The Diamond Propertyl6: Let V(y, R, T) be any 
"pill box," i.e., 

V(y, R, T) 

= Ix E X Ilxo - yOI < T, Ix - yl < R}. 

Let V(y, R + T) denote the "diamond" completion 
of V, i.e., 

V(y, R + T) 

Ix E X Ilxo - yOI < R + T - Ix - YII. 
Then 

RCV(y, R, T» = R(V(y, R + T». (2.7) 

The set of points that cannot be causally affected 
by any point in a region a is denoted by a_. 

a_ = {x E XI for all yEa, 

either (x - y)2 < 0, or (x - y)2 > 0 

and (xo - yO) < O}. (2.8) 

A set of regions, states, and operators (aI, ... , at; 
8 1, ••• , 8 z; Bl , ••• , Bm) is said to be Lorentz 
congruent to the set ({jl, '" , (jt; Til ... , Tz; 
Cl , •• , , Cm ) if there exists a common transformation 
(a, A) such that 

~ A. S. Wightman, Phys. Rev. 101, 860 (1956). 
16 R. Haag and B. Schroer, J. Math. Phys. 3, 248 (1962), 

Postulate (8b). 
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fl. = Aa. + a, i = 1, 2, ... , k, 

T. = u(a, A)S., i = 1,2, ... , l, 

C. = U(a, A)BiUt(a, A), i = 1,2, .,. ,m. (2.9) 

An operator A known to be in R(a) is occasionally 
written as Aa. Similarly, a state Sin @5(a) is written 
Sa. 

In the following, we frequently use the face 7 

that if K is a ring, Kif is the ultra-weak18 closure of 
K as well as the strong and weak closure. 

3. LOCAL STATES 

A. Experiments 

There are five aspects to every experiment. These 
are the background, the preparation of the state, the 
measurement, the repeated trials, and the averaging 
of the results. 

The background is that state of the universe which 
would have been present if the experiment had not 
taken place. It may not be completely known or 
controllable by the observer; therefore we do not 
consider it to be a local state. The background is 
usually assumed to be nearly constant and empty 
over the duration of the repeated trials which take 
place in the experiment. We consider below the ideal 
case of a uniformly empty background. In Theorem 
2 this is shown to correspond to the vacuum vector 
state, as might be expected. 

A local state is prepared by an observer in a finite 
space-time region a by performing a set of physical 
operations in a. These operations include the turning 
on of apparatus and the making of measurements. 
This produces a certain disturbance which propa-­
gates into the forward light cone subtended by a. 
Let Sa denote the set of such physical operations. 
We say that Sa is the local state prepared in a. The 
results of measurements will, however, in general 
be determined not by Sa alone, but by both Sa and 
the background state T. We say then that the actual 
state is not Sa but some kind of product TSa. 

A measurement of an observable All in the region 
fl is a physical process that yields a number, the 
observed value for All, which we denote by [All]' As 
in ordinary quantum mechanics, we identify each 
such measured number with one of the eigenvalues 
of the operator All, and vice versa; each eigenvalue 
of All is a possible measured value. 

The object of the experiment is to find whatever 
correlation might exist between the average value 

17 Reference 4, p. 44, Corollary (1). 
18 Reference 4, p. 35. 

of an operator All and the preparation of a state S,. 
in the presence of the background T. An average 
value cannot be obtained from a single measurement. 
A large number of independent repeated trials is 
necessary. A single trial consists of the preparation 
of the state Sal in the region ai, and the measure­
ment of the operator All, in the region fl., where 
Sail All" a" and {3; are all Lorentz-congruent to 
Sa, All, a, {3, respectively. 

The final averaging can be done in two different 
ways. All the experimental determinations of the 
observable All could be averaged together. We then 
say that the state Sa is nonselective, and we some­
times express this by a careted symbol Sa; or, only 
a subset of the experimental determinations could 
be averaged together. Namely, those determinations 
in which some preassigned condition had been found 
to be true in the region a. This we call a selective 
state, and denote it occasionally by a dotted symbol 
Sa. 

In the following, we refer to the experiment con­
sisting of the preparation of the state Sa and the 
measurement of All in the presence of the back­
ground T as the experiment {TSa, All}, using curly 
brackets. An individual trial in the same experi­
ment is written occasionally as (TS"iI AIIJ, using 
parenthesis. 

B. The Effects of Location 

The results of an experiment {TSa , All} could be 
affected by the intervals between the repeated trials 
(TSail All.)' In an ideal experiment these trials 
must be independent. This is usually arranged by 
making the space-time distances between the regions 
a, U {3, sufficiently great. 

The background T may be such that it is impos­
sible to do some experiments in certain regions a 
and {3. All regions would be allowed in a uniformly 
empty background, and perhaps there are also other 
nonrestrictive backgrounds. 

Even assuming that one has a nonrestrictive back­
ground, not all relative locations of the regions a, fl 
may be permissible. It is often impossible to put 
two different apparatuses in the same place. There­
fore, if a and {3 overlap, it may not be possible to 
both prepare Sa and measure All' Also, if {3 can 
causally affect a, then it is conceivable that the 
measurement of All may so affect conditions in a as 
to make it impossible to prepare Sa. However, if 
a and {3 are disjoint, and if {3 cannot causally affect 
a, then the experiment {TSa , All} should be possible, 
the background permitting. 

If a and {3 overlap, and the experiment {TS"" All} 
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is still possible, then we say that Ap is compatible 
with S", This is the case when the same apparatus 
can both prepare S" and measure Ap. 

When a and {3 are disjoint, it should in some cases 
be possible to do I TS a , Ap}, the background permit­
ting, even if {3 is in the past relative to a. In the 
four-dimensional viewpoint taken here, the difference 
between the preparation of the state S" and the 
measurement of the operator Ap is not in the time 
order of a and {3, but in the treatment of the results 
of the experiment. The measurement of Ap is a 
certain physical process that yields a set of numbers 
that are later averaged. The state S" is that set of 
all other physical processes that are performed in 
conjunction with each independent measurement of 
All, and which may be used to determine the manner 
of averaging. The processes involved in S" may be 
as well carried out after, as before the measurement 
of Ap. The dependence of Ap on S" will, of course, 
be very different in the two cases. 

C. The Average Value 

In this section we give three axioms concerning 
the average value to be found for the measurement 
of an observable. Axiom I postulates the existence 
of the average value, subject to certain restrictions 
discussed above. Axiom II gives the locality prop­
erties of this average value. Finally, in Axiom III 
we postulate the existence of a certain linear func­
tional which is identical with the average value for 
certain experiments. 

Axiom I: 
(a) If the experiment ITS", Ap} is possible, 

then the average value for Ap in the state TS" 
exists. We denote it by M(TS", All)' 

(b) Except for certain backgrounds T, the ex­
periment is possible if a and {3 are disjoint, and {3 
cannot causally affect a. 

(c) The experiment in some cases may be pos­
sible even if a and {3 overlap, or if {3 can causally 
affect a. 

Suppose that the region {3 is either spacelike or 
past relative to a; that is, {3 C a_. Then {3 cannot 
be causally affected by whatever is done in a. In 
the series of trials (TS"" All,), the sequence of 
numbers [Ap.] will be the same as if the states Sa, 
had not been set up. The average over all the num­
bers [Ap.] will then be the average value to be ex­
pected for All in the presence of the background state 
T. If S" is a nonselective state, this same over-all 
average is the one appropriate for the state TS". 
We assume therefore the following axiom. 

Axiom II: If {3 C a_, and if Sa is nonselective, 
then 

If, however, S" is a selective state, the average 
appropriate for TS" will depend on the results of 
measurements made in the regions ai' Let Ii = n;, 

j = 1, 2, ... } index the subset of trials in which 
these measurements show that S"'I is successfully 
set up. Then we must average only the numbers 
[APoJ This average could depend on S", as well as 
on the background, even if {3 is spacelike relative to 
a. This is because events occurring in the back­
ground T, in the common past of a and {3, could set 
up spacelike correlations between a and {3. We thus 
restrict Axiom II to nonselective states. 

Consider now the case when S" is selective, and {3 
can causally affect a, and ITS", All} is still possible. 
Measurements made in a may then be influenced by 
the measurement of All' In particular, the measure­
ments that monitor S" can be so influenced. The 
average over the numbers [A tlo /] could then depend 
in a roundabout, complicated way on All' Indeed, we 
show below in Appendix A that in at least one such 
case the average is a nonlinear function of All' 

The function M(TS"" All) is what is determined 
in actual experiments. However, it is not a very 
convenient thing to handle mathematically. It is not 
defined for all T, S'" and All, and it may not be a 
linear function of All if (3 can causally affect a. We 
therefore require the following axiom. 

Axiom III: For every possible state TS", there 
exists a normalized, positive linear functional, ultra­
weakly continuous IS on L(H), E(TS", A) such that, 
if {3 cannot causally affect a, and if the experiment 
ITS"" All} is possible, then 

We require that E be normalized and positive 
because M must be so. The set of measured values 
of an operator has been identified with its set of 
eigenvalues. An average of observations of the unit 
observable can therefore only be one. An average 
of observations of a positive operator can likewise 
only be positive. Thus M must be both normalized 
and positive. We require ultra-weak continuity to 
simplify the mathematics. 

If (3 can causally affect a, then E(TS", All) may 
not equal M(TS", All)' An example of this is given 
in Appendix A. It is often assumed that E(TS", All) 
is even in this case a physically determinable aver­
age value. Namely, it is the expectation value of 
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Ap in some state, prepared in the past of both fJ 
and a, that could have led in time to Sa. Such a state 
may very well exist, but we do not consider it here. 

D. Composition of States 

Independent Superposition 

Suppose that in a sequence of independent trials 
in the presence of the background T, a state S ~ 
is prepared a fraction r times, and a state S~ is 
prepared a fraction (1 - r) times. This procedure 
provides us with a certain kind of composite state. 
We denote it by 

TS-y = T(rS~ EB (1 - r)S;), 

and we regard it as a local state, preparable in the 
region'Y = a V fJ. This state is usually called the 
independent superposition of the states TS~ and 
TS~. Clearly, if the experiments I TS~, Ad and 
ITS:, Aa I are possible, then {TS-y, Ad is possible 
and 

M(TS-y, A 6) = rM(TS~, Aa) + (1 - r)M(TS:, A6)' 

Products of States 

Suppose that during each trial in the presence 
of the background T, an observer attempts to pre­
pare S~, and another observer attempts to prepare 
S~. A composite state is formed which we call the 
product state TS~S-p. We regard it as a local state, 
if it exists. 

The state TS~SP may not, however, actually exist. 
This composition could be forbidden by the back­
ground T. Regardless of T, the preparation of one 
state may make it impossible to prepare the other. 

Even if TS~S-p does exist, the expectation value 
M(TS~S;, A-y) will have no simple relationship to 
M(TS~, A-y) and M(TS-P, A-y). The following theo­
rems do, however, make clear the relationships for 
some cases. 

Coherent Superposition 

In ordinary quantum mechanics there is still a 
third kind of composition of states. There one has 
vector states, Ih, f2 E H, which can be added to 

~ 

produce a new vector state 

which is called a "coherent superposition" of fl 
and f2' 

It is possible to show that what is actually done 
in finite laboratories when coherent superposition 
is practiced, is to combine in a certain way local 
states S~, S-p which are in general mixtures, not 

vector states.19 This will be discussed in greater 
detail in a later publication. 

4. STRUCTURE 

A. Gleason's Theorem 

Axiom III strongly restricts the structure of the 
local states. For, consider the following lemma.20 

Lemma 2: (Gleason's theorem) If F is a normal­
ized, ultra-weakly continuous,18 positive linear func­
tional on L(H), then there exists a sequence of 
vectors f. E H, i = 1,2, .. , , such that 

0> 

F(C) = E (f., Cf.), 
i-I 

for all C E L(H). In particular, there exists an 
orthogonal sequence, 

i ~ j. 

The function E(TSa , C), according to Axiom III, 
satisfies the conditions of this lemma. Thus we have 

Lemma 3: For every state TSa, there exists a 
sequence of orthogonal vectors {f.}, such that 

., 
E(TS tI , C) = E (f;, Cf.). 

i-1 

In other words, T S tI corresponds to the density 
matrix E. !f.)(f.!. 

B. Pure Selective States 

Let P tI be a projection measurable in a. We let 
P tI denote the selective state formed by measuring 
P tI in a and requiring it to have the value one. Let 
T be some background for which M(T, P tI) ~ O. 
Let Qf3 be any projection s,P a' The experiment 
{T P a, Qf31 is certainly possible. We need only meas­
ure the operator 0 = 2(P a - Q(I) + 3Qf3, select 
the events for which [0] ~ 0, and count the number 
of times [0] = 3. We require for this experiment the 
following axiom21 

Axiom IV: 

M(T, P,,)M(TPa , Qfj) = M(T, Qfj), 

from which follows, setting Qfj = P tI, 

M(TPa,P a ) = 1. (4.1) 

This axiom expresses the compatibility of the ob­
servables P a and Qfj. 

Any state that involves only selecting trials ac-

U A. L. Licht, Bull. Am. Phys. Soc. 10, 47 (1965). 
'0 A. f\1: Oleaso!"!, J. Math. Mech: 6, 885 (1953). 
'1 This 18 essentially the same as ill Ref. 9, p. 57, Axiom VI. 
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eording to the outcome of measurements in a can 
be expressed as a F" by taking the intersections of 
appropriate projections. The following theorem gives 
the structure of such states. 

Theorem 1: If T is such that E(T, P "') ~ 0, then 

E(TF a, A) = E(T, P aAP a)(E(T, P a»-l, 
for all A E L(H). 

Proof: From Axioms III and IV it follows thae~ 

E(TP a, Q) = E(T, Q)(E(T, P a»-\ (4.2) 

for any projection Q E R({j), Q SPa, and {j in the 
future of a. By assumptions (2.1) and (2.7), there 
exists such a {j, (jl, with R(fil) ::) R(a). Then P a E 
R({jl), which implies28 

E(TP al P a) == 1. (4.3) 

Let {~i} be the sequence of vectors corresponding 
to TF a, as in Lemma 3. By Eq. (4.3), 

• m 

L (~i' Pa~i) = 1 = E(TP a , 1) = L (~i' ~i)' 
i-I .-1 

The norm of P a is 1; therefore, 

(~j, Pa~i) S (~i' ",;). 

If the inequality held for any i, we would have 

• • 
1: (~i' P ,,!/Ii) < L (!/Ii' ~;) == I, 
i-I i-1 

a contradiction. Thus (~i' P a~i) = (~i' ~i)' which 
implies that 

"'i = P ,,"';, for all i. 

Thus, for all A E L(H), 

• 
E(TP"" A) = L (~i' A~i) 

i-I 

= E(TF a' P aAP a)' 

For any A E R(m, (j future relative to a, P "AP" 
is the strong limit of sums of projections in R(m and 
sP a' Thus by Eq. (4.2), linearity and continuity, 

E(TF .. , All) = E(T, P aA? a) (E(T, P a»-l, 

for all A in such R({j). By assumptions (2.5) and 
!2 The usual proof of this theorem as given in Ref. 9, p. 57, 

starts with Eq. (4.2) holding for ~ll Q ::; P a • Here t~e 
restrictions placed on the QII'S reqUlre the use of the speClal 
properties of the rings R(P)· • 

23 Equation (4.3) does not follow from. AxIOm III and Eq. 
(4.1). The region a can causally affect ltself, so we cannot 
assume that E(TS", Aa) = M(TS a, Aa)· 

(2.7), L(H) is the ultra-weak limit of such R(fi). 
The theorem then follows by ultra-weak continuity. 

c. Uniform Background 

Consider an ordinary laboratory experiment in 
which a state Sa is prepared and an operator All 
measured. It is customary in such an experiment to 
ensure that there is a region 'Y including a 'u {j in 
which there is nothing extraneous present which 
might significantly influence the experiment. 

If such a region cannot be found, then the pre­
sence of the extraneous influences is usually noted 
and regarded as part of the specification of the state. 
The state is then not Sa, but some T.,. Often a 
correction is applied to the final results to deduce 
the result that would have been obtained if 'Y had 
been empty. 

We conclude that the ideal experiment takes place 
in uniform, empty region. In the following we make 
the further idealization that this empty region is 
all of space-time. All departures from emptiness 
we regard as included in the specification of the 
state to be prepared. 

Let V denote this empty background. It seems 
reasonable to assume that it is a nonrestrictive 
background; therefore, we require 

Axiom V: 
(a) For all operators All, {j finite, the experi­

ment {V, All) is possible. 
(b) For any state Sa, the compound state V Sa 

is preparable. 
Consider the measurement of an operator All 

in the presence of V. If the background is truly uni­
formly empty, then the expectation value MeV, All) 
should not depend on the position of {j, on its orienta­
tion, or on its state of motion. That is 

(c) For any (a, A) E If 

M(V, U(a, A)AIIUt(a, A» = M(V, All)' 

There seems to be no reason to assume that 
M(V, All) is not linear. Therefore we assume that 
it is linear, i.e., 

(d) For all finite (j, 

E(V, All) = M(V, All)' 

Theorem 2: For all A E L(H), 

E(V, A) = (n, An). 

The proof requires the following lemma,24 which 
we state without proof. 

24 This is proved on the basis of ring theory in Ref. 6, p. 78, 
Eq. (12.63), also in Ref. 7, Proposition 4. A field-theoretic 
p!,oof is given by H. J. Borchers, R. Haag, and B. Schroer, 
Nuovo Cimento 29, 148 (1963), Theorem IV. 
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Lemma 4: Let a be any spacelike vector, 'A > 0, 1/1 
a vector in H, and let B be in R(a), where a is finite. 
Then 

lim (1/1, U("Aa, I)BUt("Aa, 1)1/1) = (1{1, 1{I)(0, BO). 
A~CD 

Proof of Theorem £: By Lemma 4, there exist 
1{1, E H such that, for all A E L(H), 

• 
E(V, A) = L (1{Ii, A1/I,). 

i-I 

In particular, suppose A E R({3), (3 finite, E(Y, A) 
is assumed to be Lorentz-invariant for such A. 
Therefore, 

E(V, All) = E(Y, U('Aa, I)AUt(Aa, 1», 

• 
= 1: (1{1" U("Aa, I)AUt("Aa, I)1{I,), 

i-I 

for any spacelike vector a. Let E > O. Since 

• :E (1{Ii, 1/1,) - 1, ,-I 
there must be some N such that 

Clearly, for all a, 

If (1{1" U(a, I)AU
t
(a, 1)1/1,) I ~ tE. 

,-N+l 

Now 

IE(V, A) - (0, AO)I 

~ f 1(1{I" U(a, I)AUt(a, I)1{Ii) I 
'-N+l 

.. N 

+ IAI :E (1{Ii, 1/Ii) + :E 1(1{I" U(a, 1) 
'-N+l '-I 

X AUt(a, I)1/Ii) - (1/1" 1{I.)(0, Ao)l· 

By Lemma 4, we may choose a so large that for 
i = 1,2, ... , N, 

1(1{I" U(a, I)AU'ca, I)1{I,) 

- (1{1" 1{I,)(O, AO) I ~ E(3N)-I. 

Thus 

IE(V, A) - (0, Ao)l ~ E. 

Since E is arbitrary, we conclude that 

E(V, A) = (0, A, 0) for all A E R({3), 

where (3 is arbitrary, but bounded. From assumption 
(2.5), we see that each element of R(X) is the ultra-

weak limit of such operators. Since E(Y, A) is con­
tinuous in the ultra-weak topology, we conclude 
that the theorem holds for all A E L(H). 

D. Nonselective States in the Vacuum 

Now, let Sa be a nonselective state, and consider 
the experiment {YS a , All}' If {3 is spacelike relative 
to a, i.e., {3 C a', then (3 cannot causally affect a~ 
and by Axiom III, 

E(VS"" All) = M(VS"" All)' 

But (3 also cannot be causally affected by a, thUlf 
Axiom II applies, and by Axiom V (d) and Theorem 
2, we have 

E(VS"" All) = (0, AIlQ). (4.4) 

By ultra-weak continuity and assumption (2.5), this 
equation must also hold for all A E R(a'). 

Equation (4.4) states that a nonselective state 
S a must be strictly localized outside a'. 1.13 A unit 
vector state 1{1 that is strictly localized outside a' 
has been shown l to have the form 

1{1 = VO, 

where Y E R'(a'), yty = 1. Here we do not assume 
that Sa. corresponds to a vector state. The following 
theorem gives the structure of these more general 
states. 

Theorem 3: Let S'" be as above. Then there exists 
a sequence {A, E R'(a'), i = 1, 2, ... } such that, 
for all B E L(H), 

... 
(1) E(YS" , B) = L (0, A:BA,o), 

i-I 

(2) (0, A!AjO) = 0, i ~ j, 

(3) t A:A, (a) ~ 1 for all n; (b) converges -.-1 
weakly to 1, as n --+ co; (c) converges strongly to 
Iasn--+co. 

For the proof, we need the following lemma.26 

Lemma 5: Let K be a von Neumann algebra. Let 
tp, 1{1 E H be such that (1{1, A1{I) ~ (tp, Atp), for all 
positive A E K. Then there exists B E K' such that 
if; = Btp. 

Proof: Define strong closure (Ktp) = HI, and let 
PI denote the projection onto HI' It can be shown 
that PI E K'. 

Define the map C: Ktp --+ Kif; by C(Atp) = Aif;, for 

i6 Suggested in part by H. Araki, private communication 
(1963). 
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any A E K. C is clearly linear and commutes with 
K. It is also bounded on K({J as 

Moreover, 

IC(A({JW = IA~12 = (,p, A tA~) 

:$ «({J, A tA({J) = IA({J12. 

C({J = ,po 

The operator B' = CPl therefore admits of a closure 
B, which can be seen to possess the required prop­
erties. 

Proof of Theorem 3: 

Parts (1) and (2): By Lemma 3 there exists a 
sequence of orthogonal vectors ~; such that for all 
A E L(H), 

'" 
E(VS a , A) = L: (,p" A,p,). 

i-1 

By Eq. (4.4), for all A E RCa'), 

'" L: (~" A,p,) = (n, An). 
i-I 

This implies that for positive B E RCa'), 

(~" B~,) :$ (n, Bn), for all i. 

Lemma 5 then implies that there exists Ai E R'(a') 
such that 

~. = A,n. 

Parts (1) and (2) of the theorem follow immediately. 
Part (S): Define 

S" = :t A;A,. 
i-I 

We show first that IS"I :$ 1 for all n, then that S" 
converges weakly to one, and finally that S" con­
verges strongly to one. 

Part (Sa): IS"I :$ 1. For, since SIS 2:: 0, there 
exists some C" 2:: 0, C" E R'(a'), such that 

S" == C! and IS,,\ = \C .. \2. 

LetPB E R(a'), 

IC .. Bnl' = :t (n, BtA!A,Bn) 
i-I 

.. 
= L: (n, A;BtBA,n) 

:::;; :t (n, A;BtBA,n) 
i-I 

= E(VS", BtB) 

= (n, BtBn) = IBo\2. 

Thus, IC"I is bounded by one on R(a')O. But C" is a 
bounded operator, and R(a')O is dense in H by 
Lemma 1. This implies that IC"I :$ 1, and therefore 
IS"I :$ 1, for all n. 

Part (Sb): S" converges weakly to one. For, 
let B, D be any two operators in R(a'), 

(0, BtS"Dn) = :t (n, BtA;AiDn) 
,,=1 

'" 
--t 2: (0, A:BtDAin) 

= E(VS a , BtD) 

= (n, BtDn). 

Thus S" converges weakly to one on R(a')O. The 
sequence IS,,} is uniformly bounded, and R(a')n is 
dense in H. This implies that S" --t 1 weakly. 

Part (Sc): S" ~ 1 strongly. Let ~ E H. Consider 

I(S" - 1)~12 = (,p, S!~) - 2(,p, S,,~) + (~, ,p) 

:$ IS .. IIC,,~12 - 2(,p, S,,~) + (,p, ,p), 

which, by part (3a), is 

:$ (~, ~) - (~, S,,~) 

= (~, (1 - S,,)~), 

which goes to zero by part (3b). Thus S" --t 1 
strongly. 

Example (1): The strictly localized states are an 
example of the above functionals. There Ai = 
Oil V, vtv = 1. 

Example (2): Let P a denote the state prepared 
by measuring, in the presence of the uniform back­
ground, the nonzero projection P" without selecting 
events according to the outcome. In a series of inde­
pendent trials in the congruent regions {a" i = 
1, 2, ... } the result [P a;] = 1 will occur with prob­
ability (n, Pan), and the result [P a,] = ° will occur 
with probability (n, (1 - P a)n). This state is the 
independent sum of the states vi> a and V(l - P a)' 
with the respective weights (n, P .. n) and 

(n, (1 - P a)n) . 

For all B, we have then 

E(VP co B) == (n, P "O)E(Vi> '" B) 

+ (0, (1 - P a)O)E(V(1 - Pa)', B) 

== (n, P aBP an) 

+ (0, (1 - P a)B(1 - P a)n), 
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by Theorem 1. This functional is an example of the 
above with 

A; = ~ilP a + ~;2(1 - P a). 

Example (3): Let P ~ be a set of orthogonal pro­
jections in R(a) such that L; P ~ = 1. Let Ba = 

L; A;P~, for some Ai, with Ai ~ Aj for i ~ j. If the 
operator Be< is measured, and if the independent 
trials are not selected according to the outcome of 
the measurements, then we obtain a certain non­
selective state 13a • Essentially the same argument 
as in example (2) leads to a representing sequence for 
this state with 

A; = P~, i = 1,2, ... 

E. Arbitrary Backgrounds 

From the uniformly empty background V we 
can obtain other states VB",. The following theorem 
shows that any state may be in a certain sense ap­
proximated by such a state. 

Theorem 4: Let T be any state. Let the region a 
be given. Then T may be approximated uniformly 
in R(a') by a local selective state prepared in a in 
the presence of the vacuum. That is, for any E > 0, 
there is a selective state preparable in a, T;, such 
that, for all A E R(a'), 

IE(VT~, A) - E(T, A)I ~ E IAI. 

Proof: 
Part (1): Suppose T is a pure vector state if;. Then 

E(T, A) = (if;, Aif;). 

By Lemma 1, there exists C E R(a) such that 

Icn - if; I < min [!, E(-h)]. 

The operator ctc is Hermitian and positive, and 
therefore has a spectral resolution, 

ctc = loa A dP(A) , 

where a = ICl 2 and where the peA) are in R(a). 
With E given, there exists a partitioning {.1;, i 
1, 2, ... , n} of the interval [0, a], such that 

Ictc - i; A;p(.1;)1 < E(-h), 

for some A, E .1;, A, ~ O. Let P' = P(.1;), and 
define 

.. 
Q = L: A;P;. 

;-1 

Consider the state 
.. 

if;: = L EB t;PI, 
i-O 

where 

tj = A;(n, p;n)«n, Qn»-I. 

Clearly t; ~ 0, and L7-1 t; = 1. The state if;: is 
then an independent superposition of local states, 
and is thus itself a local state. 

Consider now the expectation value, for any A E 
R(a'), 

.. 
E(Vif;:, A) = L tjE(VP~, A) 

j-l 

.. 
= L A;(n, p~AP~n)«n, Qn»-l 

i-I 

and by Theorem 1, 

= (D, QAn)«D, QD)t 1
, 

since A commutes with all the P:. 
Now 

IE(Vif;: - A)I- (if;, Aif;)1 ~ {lCD, (Q - ctC)An) I 
+ I(D, clAcn) - (if;, Aif;)(D, QD)II(D, Qn)-l. 

After some manipulation this becomes 

IE(Vif;:, A) - (if;, Aif;)1 ~ E IAI. 

Part (2): If T is an arbitrary state, then it has a 
density matrix L~-l JJ.; 1if;')(if;'I, where 

., 
( ' j if; , if;) = ~ij, L JJ.. = I, and JJ.. ~ o. 

i-I 

Consider the state 
., 

T: = L EB JJ.,if;~'. 
i-I 

This, being the independent sum of local states, 
must itself be a local state. We have now, for any 
A E R(a'), 

IE(VT:, A) - E(T, A)I 
., 

~ L JJ.. IE(Vif;;:, A) - (if;', Aif;') I 
i-I 

., 

~ L JJ.i E IAI = E IAI. 
i-I 

Remarks: The above construction is a physical 
one, in the sense that there is a set of physical pro­
cesses that could in principle be carried out, that 
would produce VT:. It is not, however, a very 
practical construction. Loosely speaking, we monitor 
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the vacuum with an instrument located in a, and 
wait for a suitable vacuum fluctuation to come along. 

The construction depends on the fact that vacuum 
fluctuations are spacelike correlated. We interpret 
these correlations as being produced by vacuum 
fluctuations occurring in the past of a. The con­
struction does not therefore imply the existence of a 
direct causal link between a and a'. 

The states VT; approach T only in a'. They look 
very different from T as seen in a, or from any region 
causally dependent on a. Indeed, as E ~ 0, they may 
not even converge in these regions to any state. 

We conclude that the objections to Eq. (1.1) do 
not apply to this construction. 

The state VT; could itself serve as the back­
ground for the preparation of some other state, Sp, 
say, with (3 C a'. By varying E, we can make VT; 
approach T as closely as we like uniformly in R({3). 
We would like to conclude that VT :S~ must also 
approach TS~ uniformly in R({3). We cannot, how­
ever, do this without making a special assumption 
about the continuity of state composition. There­
fore we assume the following. 

Axiom VI: Suppose the sequence of states 
{T i

, i = 1, 2, ... } approach a state T uniformly in 
R(m. Let Sp be any local state such that {TS~, Ti Sfj, 
i = 1, 2, ... J are possible states. Then we require 
that the sequence Ti Sfj also approaches T Sfj uni­
formly in R({3). 

F. Nonselective States in an Arbitrary Background 

Suppose that a nonselective state Sa is prepared in 
the presence of the background T. A sequence of 
operators {A; E R'(a'), i = 1, 2, ... } such that, 
for all B E L(H), 

'" 
E(TSa, B) = :E E(T, A;BA;) 

i-I 

we call a representing sequence for Sa relative to 
T. According to Theorem 3, every Sa has a rep­
resenting sequence relative to the vacuum. We show 
below that this same sequence will also represent 
Sa relative to any background. 

We need the following lemma. 

Lemma 6: Let S" be represented by {A. E R'(a'), 
i = 1, 2, ... } relative to V. 

(1) There is a linear map of L(H) into L(H), 
which we denote by Sa(B), defined for all BE L(H) 
by 

"'1l .. 

S,,(B) = strong limit :E A:nA,. 
..... at i-I 

It has the further properties: 

(2) ISa(B) I ~ IBI, 

(3) E(VSa , B) = (0, Sa(B)O). 

(4) The map S,,(B) is independent of the partic­
ular representing sequence chosen for S". 

(5) For any background T, and any BE L(H), 
.. 

:E E(T, A;BA,) = E(T, S,,(B». ,-1 
The proof is given in Appendix B. We call this 

the representing map for Sa relative to V. Note that 
it is in general not an automorphism. 

We also need the following axiom, expressing the 
independence of states prepared in spacelike sep­
arated regions in the presence of the vacuum. 

Axiom V II: Let a and (3 be two spacelike sep­
arated regions. Then for any two states, S~, ~, the 
compound state VS~S; is always possible. More­
over, it should make no difference if we regard 
V S ~ as background to S~, or V ~ as background to 
S~. 

Theorem 5: Let Sa be a nonselective state. For 
any background T, and any B E L(H), 

E(TS". B) = E(T, S,,(B», 

where Sa(B) is the map given in Lemma 5. 

Proof: Suppose first B E R ({3). {3 finite. Take 
some 'Y C (a V (3)'. By Theorem 4 and Axioms VI 
and VII, there exists a selective state T; such that 

IE(TSa• Bfj) - E(VT~S", Btl) I ~ 0 

as E ~ o. Moreover, 

T~ = L: EB XiP~, 
i 

for certain projections P; E R('Y). 
Consider the state vP ;S". According to Axiom 

VII, this is a possible state. Also, 

VP~S" = (VP~)Sa = (VS,,)p~. 

By Theorem 1 we then have 

E(VP~S", Bfj) 

= E«VSa)P~, Bfj) 

= E(VSa, P~B?~)(E(VSa, P~»-I, 

and by Theorem 3, 

L E(V, AJp~B?~Aj)(E(VSa, p~)rl . , 
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Since 'Y C a', we then have, using Lemma 6, 

and by Theorem 1, 

= E(VP~, § .. (Bp». 

Thus, 

and 

IE(T, § .. (Bp» - E(VT~, S..(Bp» I 

Now, 

~ E \§ .. (Bp)l, by Theorem 4, 

~ E IBpl, by Lemma 6. 

IE(T§ .. , Bp) - E(T, § .. (Bp)1 

~ IE(T§ .. , Bp) - E(VT~S .. , Bp)\ 

+ IE(VT~S .. , Bp) - E(VT~, S .. (Bp» I 
+ IE(VT~, S .. (Bp» - E(T, S .. (Bp»1 

~lIE(TS .. , Bp) - E(VT~§ .. , Bp)1 + 0 + E IBpl· 

This goes to zero as E --+ 0, E is arbitrary, therefore 

E(TS .. , Bp) = E(T, § .. (Bp». (4.5) 

The functional E(TSa., Bp) is continuous in the 
ultra-weak topology, by Lemma 2. Let :E, Ilf.)(lf.1 
be the density matrix corresponding to the state T. 
Then 

E(T, § .. (Bp» = E (If., A;BpAilf.). 
t I i 

Clearly E,.i (A;lf., A;lf.) = 1, therefore E(T, S .. (Bp) 
is also ultra-weak-continuous on Bp. By assumption 
(2.5) then, both sides of Eq. (4.5) extend to all 
L(H), and the theorem follows. 

5. DISCUSSION 

We have seen that every physical state consists 
of a nonlocal part, the background, which is not 
completely under the control of the experimenter, 
and a local part, that is, the local state. 

There are basically two types of local states, pure 
selective and pure nonselective. There are also other 
types, obtainable from the basic two by the various 
processes of state composition. 

The local properties of these states are very dif­
ferent. The pure selective states are sensitive to 
spacelike correlations set up in the background 
state by past events. The pure nonselective states 

are not. The composite states will therefore have a 
composite type of locality. 

The mathematical structure of the pure selective 
states is familiar from ordinary quantum mechanics. 
They are simply the states "projected out" from 
the background density matrix by a local projection. 

The structure of those pure nonselective states 
which are prepared by a nonselective measurement 
is also familiar. These states are discussed above in 
Example (3) following Theorem 3. They have density 
matrices of the form 

'" ; . M= L..JP .. TP .. , 
• 

where the P; are as in Example (3), and T is the 
density matrix corresponding to the background 
state. 

However, here we consider that a nonselective 
state can be prepared by any physical process that 
does not involve a selection. There certainly are 
many such processes which also do not involve a 
measurement. For such states, the structure given 
by Theorems 3 and 5 and Lemma 6 seems to be new. 

To obtain these results we have had to use certain 
axioms. 

We postulate, in Axiom I, the existence of that 
average value of an operator, the M function, which 
is determinable by experiment. In Axiom II, we 
require that the M function have certain locality 
properties. A distinction is made in Axiom III be­
tween this experimental average value and the math­
ematical expectation value, the E function. This 
distinction is not made in ordinary quantum me­
chanics. However, it must be made here as it de­
pends on the relative locations of the regions in­
volved in the experiments. 

Axiom IV concerns the expectation values of 
compatible observables and is also used in ordinary 
quantum mechanics. 

It may not be possible to prepare certain local 
states in the presence of some backgrounds. We 
therefore find it convenient in Axiom V to postulate 
the existence of an ideally empty and nonrestrictive 
background, the vacuum state. In Axiom VI we 
assume that states have a certain continuity prop­
erty. The notion of the nonrestrictivity of the vac­
uum is strengthened in Axiom VII. 

These axioms have been found to be very useful 
in the above analysis. It is possible that these axioms 
are not independent, and a smaller set might do 
just as well. It is also possible that some of these 
axioms are over idealized. (This may be particularly 
true of those concerning the vacuum state.) Never-
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theless, it is felt that these axioms are sufficiently 
close to actuality as to still be very useful in the 
future. 
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APPENDIX 

A. The M Function 

In Sec. (3c) it was suggested that M(S", A~) may 
not be a linear function of A~ if S" is selective and 
if also {3 can causally affect 01. We prove here that 
this is so for the case when 01, (3 are disjoint, A" is 
a projection Q{J, and S" = vP '" 

The function M(VP '" Q~) is obtained as an aver­
age over the results [P a;], [QP;] of measurements 
made in the independent trials {(Vp all Q",), i = 
1,2, ... }. In fact 

M(VP", Q~) 

. 1 N {I N }-l 
= 1~ N ~ [P ",][Q~i] N {; [P ",] . (AI) 

The limit of the denominator is, however, the ex­
pectation value of P a in a state in which Q~ has been 
measured but not selected. That is, 

. 1 N ~ 
1~ N {; [Pa,] = M(VQ", Pa). 

Since (3 cannot be causally affected by 01, Axiom III 
applies and 

M(VQ~, P a) = E(VQ~, P a) 

= (11, Q"P aQ,,11) 

+ (11, (1 - Q~)P a(1 - Q/l)11), 

by Eq. (4.5). 

(A2) 

From the results of the same sequence of trials, 
one can also calculate 

M(VQ", Pa) 

. 1 N (1 N )-1 
= 1~ N ~ [Q/l.][P "J\N t; [Q",] , (A3) 

= E(VQ{J, Pa) (A4) 
= (11, Q"P aQ{J11) IQ~111-2, 

by Axiom III and Theorem 1. However, the limit 
of the denominator .L:[Q",]/N in Eq. (A3) is 
M(VP a, Q~), and by Axiom II and Theorem 2, it 
must be (11, Q~11). Thus from Eq. (A3) and Eq. 
(A4) we conclude that 

. 1 N 

1~ N {; [Q~J[P aJ = (11, Q"P aQ,,11). (AS) 

Equations (AI), (A2), and (AS), however, imply that 

M(VPa, Q~) = (11, Q"paQ,,11)[(11, Q"p"Q,,11) 

+ (11, (1 - Q~)P,,(l - Q/l)11)rt, 

which is clearly nonlinear in Q~. 26 

Note that by Theorem 1 

E(VPa, Q~) = (11, P"Q~P(11) IP a 11I-\ 

even if {3 can causally affect 01. Thus for such (3, and 
if P" and Q~ do not commute, 

E(VP", Q~) ~ M(VPa, Q/l). 

It can be seen that we do have equality if P", and 
Q/l commute. 

B. Proof of Lemma 5 

Part (1): For any B E L(H), denote 

W .. (B) = t A;BA i • 
i-I 

Let D be any positive operator in L(H). Clearly 

W .. +m(D) ~ W .. (D) ~ 0, for all n, m. 

This implies that the operator 

C';.(D) = [W .. +m(D) - W .. (D)]t 

exists. 
For any1/; E H, 

'" 
(1/1, W .. (D)1/;) ~ .L: (1/;, A;DA i 1/;), 

i=1 

'" 
~ IDI .L: (1/;, A;A i 1/;), 

i-1 

= IDII1/;I!· 

by Part (3) of Theorem 3. Thus 

IW .. (D) I ~ IDI. 

The sequence of positive numbers {(1/;, W .. (D)1/;) , 
n = 1, 2, ... } is monotonically increasing, and 
bounded by IDI 11/;12. It therefore converges to some 

26 A similar result has been obtained by S. Watanabe, Rev. 
Mod. Phys. 27, 179 (1955). 
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limit. This implies that given E > 0, there exists 
N(e) such that for all n > N(e), and for all m, 

This is the same as 

Now consider, for arbitrary I/; E H, 

I(W .. +m(D) - W .. (D»I/;12 

= (I/;, C';;(D)(W .. +m(D) - W .. (D»C';;(D)I/;) 

:::; (IW .. +m(D) I + IW .. (D)I) IC':(D)I/;12 

:::; 2 IDIIC':(D)I/;12. 

By~the above, n can be taken so large that this is 
smaller than any preassigned E. We conclude that 
{WII(D), n = 1,2, ... } is a strong Cauchy sequence, 
hence possesses a strong limit 

Sa(D) = strong limit W .. (D) . 
.. --00 

Part (3): Proof immediate. 

Part (4): Suppose that Sa is represented relative 
to V by both 

{A'i, i = 1,2, ... } and {A'!, i = 1,2, ... j. 

By Part (1), 
.. 

&(B) = strong limit L A~tBA~, 
,,-to) i-I 

S'~(B) = strong limit t A~,tBA~'; 
n ..... CD i-I 

both exist for any BE L(H), and 

E(VSa, B) = (n, &(B)n) = (n, S':(B)n). 

In particular, let B = DicD2, where D 1, D2 are 
arbitrary operators in R(a'), and C is an arbitrary 
element of L(H). Then clearly 

(n, S~(D:CD2)n) = (D1n, &(C)D2n), 

(n, S'~(D:CD2)n) = (D1n, S'~CC)D2n), 

which implies that 
Any B E L(H) can be written as the sum of four 

positive elements, therefore Part (1) holds. (D1n, S~CC)D2n) = (D1n, S'~(C)D2n). 

Part (2): Let <p, I/; E H, 1<p1 = II/;I = 1. Let B E 
L(H). By part (1), S,,(B) exists and 

I(<p, SaCB) 1/;) I = It (<p, A;BA.I/;) I 
'" 

:::; IBI :E IAi<p1 IAil/;1 
i-I 

:::; IBI [t IAi<P12Jlt IA;I/;12T 

= IBI, by Theorem 3,'Part (3). 

In particular, let <p = S,,(B) IS,,(B)I/;1-1. This yields 

I Sa (B) I :::; IBI· 

By Lemma 1 we conclude that 

S~(C) = S'~(C), for all C E L(H). 

Part (5): Let :E7-11l/;.) (¢'i]Ai, Ai ;::: 0, L;7_1Ai = 1, 
be the density matrix corresponding to the back­
ground state T. We must prove only that 

lim E(T, W .. CB» = E(T, S,,(B». 

Now E is continuous on the ultra-weak topology. 
The operators W,,(B) ~ S,,(B) in the strong topol­
ogy and are uniformly bounded. Any strongly con­
vergent, and uniformly bounded sequence is also 
an ultra-weakly convergent sequence, from which 
the theorem follows. 
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Absorptive Parts and the Bethe-Salpeter Equation for Forward Scattering* 
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We have developed a Laplace transform approach to the Bethe-Salpeter equation for absorptive 
parts of forward scattering amplitudes. The method appears direct and unsophisticated and is useful 
for computation. It is essentially identical to decomposition into four-dimensional pattial waves but 
the inversion formula is more straightforward. We have obtained the high-energy behavior of ~ums 
of several types of <1>' gr~phs in the weak- and strong-coup~ng limits. These examples illustrate some 
g:neral results yve obtam for Mth o!der <1>' kernels. Spe.clfica11y, the absorptive part behaves as 
8 ·(log 8)1' f?r high s; for weak coupling A, 1lo ,...., AiM, while for strong coupling in the ladder graph 
approximation! 1lo/",t --+ !/2:r. We have also proven an interesting inequality related to absorptive 
parts. One of Its corollanes 18 that uncrossed ladder graphs "majorize" crossed ones. 

I. INTRODUCTION 

THE Bethe-Salpeter equation for forward scat­
tering is often decomposed using four-dimen­

sional partial wavesl
-

4 and a Euclidean formalism.6 

An alternative approach deals with the Bethe­
Salpeter equation for absorptive parts.e-

ll The high­
energy behavior of the solution is usually the desired 
end result in both cases. It is obtained in the partial­
wave approach from the singularities in the n plane, 
and in the absorptive part approach by direct but 
often somewhat cumbersome means. The absorptive 
part approach is, however, appealing for the follow­
ing reasons: (a) It deals with real quantities. (b) It 
often circumvents divergences by placing internal 
lines on the mass shell. (c) It does not entail passing 
to and from a Euclidean metric, thus avoiding the 
temporary inconvenience of a bounded center-of­
masS energy. Cd) It avoids singularities in propaga.­
tors. 

In this paper we discuss and utilize an approach 
to the Bethe-Salpeter equation for absorptive parts 
which is based on the Laplace transform. We obtain 
an equation similar to the four-dimensional partial­
wave Bethe-Salpeter equation, but in a continuous 
variable n. The operation of inverse Laplace trans-

* Supported in part by the U. S. Atomic Energy Commis­
sion. t Present address: Palmer Physical Laboratory, Princeton 
University, Princeton, New Jersey. 
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7 S. Treiman and G. Tiktopoulos, Phys. Rev. 135. B711 
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8 S. Treiman and G. Tiktopoulos, Phys. Rev. 136, B1217 

(1964). . 
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formation replaces integration along the deformed 
Sommerfeld-Watson contour. We obtain the high­
energy behavior of the absorptive part from the 
leading singularity in the n plane. 

We have summed several types of graphs in t/14 

theory, including one set for which the kernel is of 
fifth order in A, using a generalization of the Bethe­
Salpeter equation.4 We have also obtained some 
interesting results in weak- and strong-coupling 
limits for a wide class of <p 4 kernels. The specific 
examples illustrate these general results. 

We also prove an inequality for absorptive parts 
based on the Schwarz inequality. One of its con­
sequences, roughly speaking, is that uncrossed ladder 
graphs IImajorize" crossed ones. 

Section II is devoted to a discussion of the Laplace 
transform method. In Sec. III we present specific 
examples of summed graphs, and in Sec. IV we 
obtain some general results which these examples 
illustrate. The above-mentioned inequality is proved 
in Sec. V. 

Our metric is (-1, 1, 1, 1). 

II. ABSORPTIVE PART EQUATIONS AND THE 
LAPLACE TRANSFORM METHOD 

We write the Bethe-Salpeter equation symbol­
icallyas 

A == B+KA. (1) 

For forward scattering of particles of momenta 
PI and P2, A and B have cuts for s = - (Pl + pSJ. > 
o and/or u = -(PI - P2)2 ~ O. (We assume th;;J, 
p~, P:, and the internal masses are such that no 
anomalous thresholds occur.) We write the imaginary 
(or absorptive) part of (say) A evaluated above the 
8 cut as A., and above the u cut as Av. One calculates 
A. by "cutting" the graph in all possible wayslO 

10 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960). 

1670 
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so as to separate it into two pieces, one containing 
the initial two lines and the other containing the 
final two lines. A .. is calculated similarly except that 
the two pieces each contain one initial and one final 
line. 

The above prescription allows us to write coupled 
equations for A. and A .. based on Eq. (1): 

k' k'PI k'P2 

J = k''Pl ~ Pl'~ 

k'P2 PI'P2 p~ 

= k2p~p:(1 - cosh2 cP - coslf CPI 

- cosh2 ~ + 2 cosh cP cosh cPI cosh cP2)' (7) 

A. = B. + (KA). 

= B. + K,A. + K .. A", 

The condition J < 0, together with conservation of 
energy to tell us the appropriate choice of root, then 

(2) implies 
Au = B .. + (KA)" 

= B .. + K.A .. + K .. A •. 

These may be uncoupled using the definitions 

A + = A. + A .. , A - = A. - A., etc. 

to give 

A'" = B" + K:A", 

or, more explicitly, 

A "'(Pit 'Pa) == B"'(Pu 'Pa) 

(3) 

+ s!. J (kll !km2)2 K"(Pl' k)A "'(k, 'Pa). (4) 

Let Pl and Pa be spacelike. (We discuss later the 
case that one or both is timelike.) Then both K" 
and A" vanish for 8 < 0, U < O. This fact then im­
plies that in (4) k ranges over spacelike values only. 
(See, e.g., Ref. 7.) Moreover, the above threshold 
conditions allow us to make the following definitions 
for real cP, cPl, and cPa: 

cosh cP == IPl'P~I/[(P~)l(p~);J, 

cosh cPI == !pl·kl/[(P~)I(k2)i], 

cosh CPli == lPa·kll[(P~)I(k2)1]. 

(5) 

One can then express A", B", and K" as functions 
of two invariant masses and the invariant angles 
cpo The integration over kin (4) can be transformed 
into one over e, cPh and CP2 by standard means. ll 

One obtains 

d'k K'''(Plt k)A *(k, P2) 

_ rO( - J) sinh cPI sinh cPak' :U. d..l. dk' 
- sinh cP '1MfI1 '1'2 

X K*(cPl' P~, k2)A*(~, k2
, p:), (6) 

where 

USee, e,g., T. W. B. Kibble, Phys. Rev. 117,1159 (1960). 

(8) 

This condition is just one of reality of the scattering 
angle in the center-of-mass frame. The absorptive 
part equation may then be written as 

A *(cP, P~, P:) = B*(cP. p~, p;) + &r3 s~ cP 

X K*(cplJ p~, k2)A : (cPa , ka, pD, (9) 

where the limits on cPI and cP2 are defined by (8) and 
the thresholds of K* and A *. Note that these thresh­
olds are functions of momenta. They are related 
to the usual thresholds 80, Uo by 

..I. = cosh-1 {min (so, Uo) + ~~ + p;}. (10'\ 
'1'0 2(PD.(P~) ~ 

The following transform simplifies (9) consider­
ably. We define 

F .. ~, p~) == ~ 1'" cbp sinh cpe-'''.t). 
11" I} 

x F(cp, p~, pD, (11) 

where F denotes A", B", or K". Applying this trans­
form to (9), rearranging the order of integration in 
the KA term, and performing the trivial cP integra­
tion, one obtains 

A !(P~, p~) = B!(P~, p~) 

1 ia> k2 d(k') 
+ 16r2(n + 1) 0 (k2 + m2

)2 

X K!(P~, k2)A!W, p:). (12) 

Expression (11) is just the one given in Ref. 3 for 
the partial-wave amplitude and was used there to 
continue to complex n. We stress that in our ap­
proach n is complex from the start. Furthermore, we 
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see that the Euclidean approach needed for the 
partial-wave decomposition is not required here; 
by working with absorptive parts we can arrive at 
(11) more directly. 

Equation (12) is the same as the partial-wave 
Beth~Salpeter equation, the nature of whose solu­
tions is described extensively in Refs. 1 and 3. For a 
q} theory, the kernel is Fredholm and the right-most 
singularities in the n plane are (in general) simple 
poles. These poles may be obtained by solving the 
corresponding homogeneous equation.6

•
12 For a cp' 

theory the singularity of the kernel for large k leads 
to cuts in the n plane.2 

Equation (11) is a Laplace transform. It requires 
for its existence in some region Re n 2:: N only the 
fact that F obeys a threshold condition and the 
condition 

F(cp, p~, p~) ::; eN<t>G(p~, p;), (13) 

which is equivalent to F being polynomially bounded 
in 8 and u. We shall see that such bounds can be 
assumed to exist. Then (11) may be inverted to give 

(2/rr)F(cp, p;, p;)e-<t> sinh cp 

1 fC+iO> 
= -2' . dn e~F,.(p~, pi), n C-.a) 

(14) 

where c 2:: N. The contour in (14) is the same as the 
Sommerfeld-Watson contour after it has been opened 
up parallel to the imaginary axis. Note, however, 
that the integrand is of somewhat simpler form than 
in the Sommerfeld-Watson representation. 

Suppose the Born term in (9) behaves when 
cp ---+ ex> as eN<t>cpPG(p~, p~) for some Nand {3. Then the 
right-most singularity of B: will be at n = N. For 
very small coupling, the right-most singularity of 
A ~ will also be very near n = N. 1

•
13 Then we may 

represent A ±(cp, p~, p~) in the form (14), with c = 
N + E. As we let the coupling constant increase, the 
right-most singularity of A! will move to the right 
and we must deform the contour in (14) to keep 
to the right of it. The contribution to A ±(cp, p~, p~) 
of this right-most singularity is easily evaluated as 
in Refs. 1, 2, and 3. An isolated pole at no gives rise 
to a behavior 

(15) 

(log 8)P. If the cut is of the form An ~ 'Y/(n - no)!, 
for example, we find that {3 = _!.2,a 

To extend the method described above to cases 
for which one or both of the external vectors are 
timelike, we simply note that, if certain mass in­
equalities are met, the representation (5) is still 
valid provided one takes the square root of positive 
quantities. For example, if q is timelike and k is 
spacelike, 

2q.k = -(q - k)2 + q2 + k2 2:: 2(_q2)tW)t, 

if 

or 

_(q _ k)2 + q2 2:: _q2, 

-(q - k)2 2:: _2q2. (16) 

The general discussion of continuation from space­
like to timelike momenta has been given by 
Tiktopoulos5 and is illustrated by Tiktopoulos and 
Treiman.7 

m. SOME SPECIFIC SUMS OF GRAPHS 

The method of the previous section has actual 
computational value. In Ref. 3 a general discussion 
of the Beth~Salpeter equation was given for cp' 
kernels. It is interesting to note for what kernels can 
in practice obtain the leading singularity no, and 
hence the high-energy behavior. 

In what follows we restrict ourselves to spacelike 
PI and P2' All internal masses are taken to be zero. 
We consider cp' kernels which can be renormalized 
by a single subtraction. This corresponds to assum­
ing that their absorptive parts are bounded by a 
constant as cp ---+ ex>, so that the expression (11) for 
K,,(p~, p~) converges for n > O. We treat only cross­
ing-symmetric kernels (or ones which we symmetrize 
artificially) so that we may neglect the equation for 
A -, and thus drop the superscript (+) in the re­
mainder of this section. 

An equation similar to the Beth~Salpeter equa­
tion may be obtained by introducing two-particle 
intermediate states artificially.' (see Fig. 1.) The 
dotted lines are given momentum labels, but they 

N\!'S -6 .. 7\ 1\ 
which is the same as a behavior 8"· for high 8, while XXX -Z .... Z.·.·X 
a cut ending at no gives rise to an additional factor _~ 
of cpP in (15), corresponding to an additional factor 

12 J. Rosner, J. Math. Phys. 7, 875 (1966). FIG. 1. Artificial introduction of two·particle intermediate 
18 M. Kugler and S. Nussinov (unpublished). states. 
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do not have propagators associated with them. One 
then obtains a generalization of the Bethe-Salpeter 
equation by replacing the (k2 + m2

)-2 factor in (12) 
by (k2 + m2)-1 for the case illustrated in Fig. l(a), 
or by 1 for Fig. l(b). 

If one lets all internal particles of K be massless, K 
can be only a function of pUp~ times an over-all 
factor (p~p~) -". For the true Bethe-Salpeter equa­
tion a = 0, for Fig. l(a) a = !, and for Fig. l(b) 
a = 1. We define the dimensionless functions 
A .. , 13n, and "En by the general formula 

F" == (p~p;)"Fn (17) 

so that A .. satisfies 

A .. (PI' P2) = 13,,(pI' P2) 

+ 811"2(n
1
+ 1) L" d; "En(~ )An(k, P2). (18) 

Here and later we mean P = (p2)!. 
The dilatational invariance of the kernel of (18) 

allows the equation to be solved by taking the Mellin 
transform with respect to the variable 

(19) 

One then finds that the condition for the singularity 
is3 

(20) 

where 

1'" dx 
K .. == -"E .. (x). 

o x 
(21) 

We note here two very useful rules for composition 
of kernels. Iteration of the kernel K CI

+
2

) == K CI
) + 

K (2
) corresponds to random alternation of K CI

) 

and K (2
) in the summed graphs. Since (11), (17), and 

(21) are linear operations this is just reflected in the 
relation 

(22) 

Regular alternation of K CI
) and K (2

) corresponds to 
iteration of the kernel 

K(l®2) (22) == 2 1 1'" dk K!l) (22) "E!2) (!E...). 
" P2 811" (n + 1) 0 k k P2 

(23) 

This is just a convolution whose Mellin-transformed 
counterpart is 

K!I®2) = K!1) K!2) /811"2(n + 1). (24) 

By the artificial introduction of two-particle inter­
mediate states at the points marked by arrows we 

FIG. 2. Specific graphs Bummed. 

I NAME 

"Nested 
Bridqe" 

"crossed 
Box" 

have decomposed the following graphs into their 
respective "units," for which it has been possible to 
calculate Kn. [See Fig. 2. In the case (c), Kn has 
been expressed in terms of an infinite sum which can 
be evaluated in the weak-and strong-coupling limits.] 

The calculation of K" for cases (b) and (c) of Fig. 
2 makes use of the convolution formula (24). The 
decomposition of these kernels is illustrated in Fig. 
3. We understand all subunits to be crossing-sym­
metrized as discussed above. 

We thus need K .. for subunits A, B, and C of Fig. 
3. The absorptive parts for these subunits are 

2 2K ( 2 2)}..2 ¢ 
PIP2 A ¢, PI, P2 = 811" sinh ¢ cosh ¢ , (25) 

(26) 

p~p~Ka(¢, p~, pi) 

}..3 ¢ P 1'" ¢' dcp' 
= - (811")2 sinh ¢; .po cosh 1/>' - cosh ¢' (27) 

The common threshold for these absorptive parts is 

(28) 

CASE I KERNEL SUBUNIT 

b 

(B) (Al 

(B) (C) 

FIG. 3. Decomposition of the crossed box and fifth-order 
kernel. 



                                                                                                                                    

1674 S. NUSSINOV AND J. ROSNER 

Taking the transform (11) and recalling Eq. (17), 
one obtains 

(29) 

Koe = [X3/(8r2)2]5r(5), 

where r(5) is the Riemann zeta-function, and 

K AS log n + o(!.-) 
ne ~ 8 4 3 S • 

< .. _ .. ) rn n 

(36) 

(37) 

(30) We now put the "pieces" together to give the 
kernels of Figs. 2(a), 2(b), and 2(c), using the con­
volution formula (24). For general X, Eq. (20) deter­
mines no only implicitly. We can solve for no in the 
weak- and strong-coupling limits. e- h.+l)l/>' _ e-<Il+l)l/> 

X cosh cP' - cosh cP • (31) For the graphs of Fig. 2(a), 

(The last equation was obtained by symmetrizing 
the integrand in cp and cp'.) One then takes the Mellin 
transform (21) using the substitution (28) and re­
versing the order of integration so as to perform the 
CPo integration first. One obtains14 

_ ~ ('" cp3 d4> e-(t,+l)l/> 

lid - 2r2 J 0 cosh cp 

= ~ [ ~(3)(n ! 4) _ ~m(n ! 2)], (32) 

where 

a:+1 

~(·)(x) == d,xn+l log rex) 

no (nested bridge) 

= -1 + (A2/29r4)[~<2)m - ~(2)(1)] 

= -1 + (A2/27r) (weak coupling) 

= Ai/8ir (strong coupling). 

(38) 

(39) 

Here we have used standard properties of ~<")(X).16 
For the graphs of Fig. 2(b), 

no (crossed box) 

= L8r2~3~2r2 I ~(2)(1) - ~(2)(l)} J 
= (X2/2V){ 3r(3)} t (weak coupling) (40) 

= Xi/8 ir (strong coupling). (41) 

= (-I)"+ln t ta (x +1 kr+ 1 , 

liaB = ;;2 10" cp d4> sinh cpe-<a+l)l/> 

(33) For the graphs of Fig. 2(c), 

),.2(n + 1) 
= r2n\n + 2)2 , 

x3 (CO r 
Ii"e = (2r)4 J 0 cp d4> J 0 cp,2 d4>' 

e-<,,+1)I/>' _ e-<,,+l)l/> 

X cosh cp - cosh cp' • 

(34) 

(35) 

The last expression can be evaluated exactly for 
n = 0, and its asymptotic behavior as n ~ (Xl can 
be obtained. (See Appendix A.) We find 

FIG. 4. An artifical decomposition of the bubble exchange 
dIagram. 

U See, e.g., Tables of Integral Transforms, A. Erdelyi Ed. 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. I, 
p. 163, Eq. (7). 

no (5th order) 

= [
2 '(~:2~~5) J (weak coupling) (42) 

_ AS/S(i log A)l/s 
- 29/8(r2)6/8 (strong coupling). (43) 

We see that in (43) no does not even have a power 
dependence on X for strong coupling. 

Notice that no for the sum of bubble exchange 
diagrams2 in Fig. 4 may be obtained very simply 
from the condition 

yielding 

no (bubble) = -1 + (1 + Aj8t r%)t. (44) 

We find an identical strong-coupling behavior in 
(39), (41), and (44). This is a general feature of 
certain cp4 ladder graphs for forward scattering which 
we discuss further in the next section and in Ap­
pendix B. It resembles a result for gcp3 ladder graphs 

111 See e.g., A. Erdelyi et al., Higher Tramcendental Func­
tions (M'cGraw-Hill Book Company, Inc., New York, 1953), 
Vol. I, Chap. I. 
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for forward scattering with scalar photon exchange 
that 

lim no/(g/41rm) = 1, (45) ....... 
where m is the mass of the side lines of the ladder.16 

No such result seems to hold for graphs with "inter­
nal" vertices, however, as (43) shows. 

For weak coupling we see from (38), (40), (42), 
and (44) that, of the four sets of graphs in Figs. 2 and 
4, bubble exchange gives the dominant contribution 
to high-energy scattering. We show in the next 
section that for a general cp' kernel of Mth order, 
no '" AM /2 for weak coupling. 

Note that we have summed all but one of the cp' 
kernels with no inserts up to and including fifth 
order. (See Fig. 5.) Iteration of the kernel (d) seems 
impractical from a purely computational standpoint. 

IV. GENERAL WEAK- AND STRONG-COUPLING 
LIMITS 

A convenient expression for K±(cp, p~, p~) exists in 
terms of Fcynman parameters. Consider a cp' kernel 
of order M with I internal lines requiring a single 
subtraction. The scattering amplitude associated 
with this kernel develops a singularity when the 
discriminant D(a, PI, P2)17 of its Feynman-param­
etrized denominator becomes negative. The absorp­
tive part corresponding to this singularity may be 
writtenS 

K "'( 2 2) M 11 dal ••• dar cp, PI, P2 = const X X X (d t )2 
o e ail 

(46) 

where 

D(a, PI, P2) = F(a)p~ + G(a)p: 

- 2pIP2H(a) cosh cpo (47) 

Det (ail) is a homogeneous function of degree L of 
the Feynman parameters ai, where L is the number 
of loops in the graph. F, G, and H are homogeneous 
of degree L + 1. Convenient topological rules exist 

18 When massive particles are exchanged in (1<1>' ladder 
graphs, no increases as «(1/1-1)' fori arge (I, in the special cases of 
the one-particle-exchange kernel (Ref. 13) and the kernel for 
crossed exchange of two particles (J. Rosner, unpublished). 
Such a result, however, has not yet been proven in the general 
case. 

17 R. J. Eden, 1961 Brandeis Summer Institute Lecture 
Notes (W. A. Benjamin Company, New York, 1962). 

'~~')<~~~ 
P, p. P, P, p. P, Pz 

(a) (0') (b) (el 

~~' A 
Pz P, Pz 

(c'l (dl 

FIG. 5. The fifth-or-Iess-order <1>' kernels without inserts. 

for the calculation of these functions.1s The functions 
satisfy the inequalities 

F~ IHI, G~ IHI. (48) 

Taking the transform (11) of (46), one obtains 

K!(12) = const AM r
l 

~d ~". ~~r c5(1 - ± a /) 
P2 Jo e a" 1-1 

X {8(-H) ± 8(H}}U{2 fHI ~ + 2 ~I ~ 
[( F 12 G ,&)2 ]i}--

+ 2 IHI P2 + 2 IHI PI - 1 

- [n ~ (n + 2)]1 (49) 

The Mellin transform (21) may be written using the 
substitution 

(50) 

as 

."..,. M r'" t dal ••• dar ( 
.0.. .. = const A J

o 
dy Jo (det a,j)2 c5 1 -

X [{:;Y"{8(-H) ± 8(H)} 
1 { ( HI)I}--X n cosh y + cosh

2 
Y - FG 

- [n ~ (n + 2)]1 (51) 

In the weak-coupling limit one sees from (51) and 
(20) that n ~ O. In this limit the major contribution 
to (51) comes from the region of large y, where 

cosh y + [cosh2 Y - (H2/FG)]1 ~ e-. 

18 J. B. Boyling, J. Math. Phys. 6, 1469 (1965). 
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Hence, as n --t 0, 

K: --t (CO~)AM J dal ... rU;I ~(1 - ~ 
n (det a;;) U £... al) 

X {O( -H) ± O(m}' (52) 

showing that as A --t 0, 

(53) 

for a graph of order M. As mentioned earlier, this 
implies that the bubble kernel dominates all others 
in the weak-coupling limit. 

In the strong-coupling limit, n --t <Xl and only the 
region where cosh y + [cosh2y - (H2/FG)] is very 
close to 1 contributes to (50). This occurs for small 
y and FG ~ H2. We define 

A == (FG - H~/FG. (54) 

Note that 0 :$; A :$; 1. The limit 

L(A) == lim 1'" dy {cosh y + (sinh2 Y + A)' 1-" 
...... '" 0 

can then be calculated by scaling. Let A = 8/n2 and 
y = ~/n; one obtains 

L(A) = A'Kl(nA') , 

where Kl(x) is a Bessel function, so that 

K: --t AM J dal .. , rU;I 8(1 - L: al) 
( .. _"') n (det a;;) 

X (1 - A)!"A'Kl (nA'){8(-H) ± O(ml 

- (n --t n + 2). 

(55) 

(56) 

The major contribution to (56) is obtained when 

A ::s l/n2 and (1 - A)'" r-.J 1. 

Now A vanishes only when F = G = IHI, as can 
be seen from (48). Equality in both relations holds 
(as can be seen from the rules in Ref. 18) only if: 

(i) a subset of the al vanishes so that the graph 
reduces to one of the forms of Fig. 6, or 

(ii) a subset of the al vanishes so as to short­
circuit a closed loop or so as to reduce the graph to 
the form shown in Fig. 7. 

FIG. 6. Reduced graphs contributing to the strong-coupling 
limit. 

FIG. ? Reduced graph which does not 
contribute to the strong-coupling limit. 

~P2 
P, P2 

F=G=H=O 

Since in case (ii) F, G, and H all vanish linearly in 
some scaling parameter, A as defined in (54) will not 
vanish identically in the remaining al. Hence only 
case (i) need be considered. 

Let 8 denote the minimum number of parameters, 
say al ... a., whose vanishing reduces the graph as 
shown in Fig. 6. (It turns out that only these minimal 
subsets of the al need be considered.) The major con­
tribution to (56) as n --t <Xl comes when these param­
eters are near zero. 

A method of scaling19 can be used to discuss these 
contributions. A direct scaling of the parameters in 
question, i.e., 

(57) 

may not be adequate since the integrations over 
unscaled parameters may diverge when p. is set 
equal to zero. In general, a "complete set" of scalings 
of minimal length 8, including "preliminary scalings" 
of various closed loops, must be performed. This 
is not attempted here; we restrict most of the dis­
cussion to the case where the direct scaling (57) is 
applicable. 

For II- small we write 

• 
A = L: al AI + O(a~) (K = 1, ... ,8) 

I-l 

where 

(58) 

After the change of variables (57) in (56), the inte­
gration over II- then yields 

- (n --t n + 2). (59) 

A carat () indicates that II- is set equal to zero in 

19 G. Tiktopoulos, Phys. Rev. 131, 480 (1963). 
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m:IO 
5<6 
(0) 

m:a 
5=6 
(b) 

FIG. 8. Ladder graphs with more than one contribution 
to K •. These graphs can be reduced in more than one way, 
e.g., by shrinking heavy lines. 

evaluating the quantity in question. When (59) 
converges we then have 

fi .. ± -t const (AM /n2H3
) , (60) 

(ft-D:) 

and (20) finally gives 

no '"""' A M/(2.H) const. (61) 

Let us apply the result (61) to ladder graphs. One 
can approximate the absorptive part of a ladder 
graph by cutting its rungs alone. 9 (That this is not 
the only contribution to K. for general ladder graphs 
is illustrated in Fig. 8.) Since short-circuiting any 
rung will reduce a ladder diagram to one which 
cannot be cut in this manner, the only scaling rel­
evant to the high-n limit in this approximation is 
that of the side lines, reducing the graph to the form 
of Fig. 9. In this case the function f [defined in (58)} is 

f - (~ ,) det au ( ~ ,) (~ 1 ) - L.... al -- = L.... al L.... - • 
1-1 II 1-1 K-.+l aK ' 

furthermore, 

( 

1 1) 1 

det au = L: - II aK' 
/-.+1 al K-.+l 

The a~ integrations in (56) are trivial and the con­
vergence of the remaining integral, i.e., 

J Kft, daK 8(1 - Kt OK) 

( ± a;I)'+2( IT aK)2 
K-_+l K-_+l 

is verified by power counting. Thus (61) is applicable, 
and since in this case s = M - 2 we obtain for all 
ladder graphs 

lim noA -i = Co. (62) 
A_", 

FIG. 9. The reduced ladder graph ob­
tained by shrinking side lines. 

FIG. 10. The reduced ladder graph for the fifth-order diagram. 

Indeed, the same constant, Co = 1/271", appears when 
the contribution of K .. is neglected in all the examples 
worked in Sec. III except for the one of Fig. 2(c). 
[When we neglect K.. we must merely divide the 
right-hand sides of (32) and (34) by 2. Then (39), 
(41), and (44) will be modified accordingly.] In 
fact, as is shown in Appendix B, CO = 1/271" for rp4 
ladder graphs in general in the above approximation. 

A simple example for which (60) does not apply 
is the fifth-order graph of Fig. 5(c). In this case f 
is again det aofiI as calculated from the reduced 
graph of Fig. 10, and (59) diverges at al = 0, 
a2 = O. This seems to be related to our result (37) 
that K .. does not have a simple power dependence 
on n in the strong-coupling limit. The fact that the 
power of n in (37) is predicted correctly by (60) 
suggests, however (bearing in mind analogous high­
energy-behavior calculationsI9

), that even in the 
general case (60) may be true up to a power of log n. 

Certain ladder graphs of order M can be reduced 
by shrinking less than M - 2 lines [cf. Fig. 8(a)]. 
These may have by (61) higher no values as A -t Q); 
hence the approximation leading to (62) may not 
be valid in the strong-coupling limit. This approxi­
mation is, however, natural for weak coupling since 
for a given number of particles in the intermediate 
state the contribution to the absorptive part from the 
lowest-order production diagram is taken. (See Fig. 
11.) 

FIG. 11. The simple cf>3 production 
diagram. 

V. AN INEQUALITY FOR CONTRIBUTIONS 
TO ABSORPTIVE PARTS 

We now prove an inequality satisfied by con­
tributions of the Cutcosky diagrams shown sym­
bolically in Fig. 12 to the absorptive part. It is 
assumed that the intermediate lines joining Al with 
Al (or A2 with A2) in the right half of the diagram 
join "congruent" vertices with no crossing or per-
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FIG. 12. A symbolic description of the inequality (63). 

mutations of lines. Thus, for the particular case in 
which Al is the simple q,3 production diagram (Fig. 
11) this joining will form a simple ladder diagram. 
For the correspol'lding q,' case we would obtain the 
bubble series of Fig. 4. 

The inequality, which explicitly reads 

J ... J 1) ~~. [A 1 (P1P2k.) A ~(PlP2k.) 
+ A ~(PlP2k,)A2(PlP2ki)] 

~ J ... J I} ~~~i [I A 1(PIP2k.) 12 

+ IA2(Ptpzk,) 12] (63) 

follows directly from the Schwarz inequality. 
Letting Al and A2 be diagrams of Fig. 11, or the 

corresponding q,' diagrams, we find that the con­
tribution to K. of uncrossed ladders always majorizes 
that of the general ladder when the graph is cut in 
such a way so as to leave its sides intact. Our specific 
examples (25) and (26) for which only such a cut 
contributes to K. illustrate the inequality. Moreover, 
the result'·20 that no (truss bridge diagrams) S no 
(bubbles) is readily understood using this theorem. 
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APPENDIX A. BEHAVIOR OF K .. c AT n = 0 
AND n-+ 00 

In this Appendix we prove (36) and (37) from 
(35). First, we note that 

cosh q, - cosh q,' = ;e</>' (e -</>' - e -</» (e</> - e -<1>'). (AI) 

For n = 0 Eq. (35) becomes 

Koc = (~;41~ q, dq, 1</> q,,2 dq,' e-</>' 

X (e<l> - e-<I>,)-l. (A2) 

10 J. D. Bjorken and T. T. Wu, Phys. Rev. 130,2566 (1963). 

We change variables: Define x and y by 

Then 

q, = l(x + y), 

q,' = !(x - y). (A3) 

For general n, we use the property of the Laplace 
transform that if it is specified at a denumerable 
infinity of evenly spaced points along the positive 
real axis it has a unique analytic continuation. Let 
us compute expression (31) for the integers n > o. 
We use (AI) and write 

(A4) 

We also make use of the expansion 

1 
(A5) 

• 
X .E {er + n + 1 - Tj -l{er + T + 11-1 

~-o 

or, defining er + T = k and er + n - T = m, 

X 
k-m+.. e-(k+l)</>o {I } 
.E k -- +q,o . 

k-Im-.. I + 1 k + 1 
(A6) 

(_+ .. +1: eTen) 

(It is amusing to note that this result can also be 
obtained as a partial-wave projection of the kernel 
K~ in a Euclidean formalism.) 

Taking the Mellin transform (21), we obtain 

,,3 CD I:-m+,. 

K .. c = (2?J-)4]; .t-f,;. .. 1 [(m + 1)-2(k + 1)-2 
(m+n+k even) 

X (2 + k + m)-l + (m + 1)-1 

X (k + 1)-2(2 + k + m)-2 

+ (k + 1)-I(m + 1)-2(2 + k + m)-2 

+ 2(m + 1)-I(k + 1)-1(2 + k + m)-']. (A7) 
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For high n, we may approximate the condition 
[en + m + k) = even] by reducing the sum by a 
factor of 2. The asymptotically leading term in 
(A7) is then found by using partial fractions to be 

~ AS logn (1 ) 
.Ll.. .. c -t 81r4 8 + 0 3 . 

< ........ ) n n 
(37) 

APPENDIX B. STRONG-COUPLING BEHAVIOR 
OF LADDER GRAPHS 

In this Appendix we prove a result for t/J4 ladder 
graphs analogous to the result (45) for t/J3 ladder 
graphs. We neglect the contribution of K .. to A. for 
formal convenience, as in Ref. 9. Then, using the 
kinematically obtained bounds of Ref. 9, 

K«t/J, p~, P:) s K(t/J, p~, P:) s K>(t/J, p~, P:>, (B1) 

where 

K I _ l(nr3AM 

~(cJ>, Pl, P:> - (47r)2Mr (M)r(M _ 1) 

X [cosh. t/J - cosh cJ>o]M-2(2e",·)M-2 (B2) 

for an Mth-order kernel. (Recall the definition (28) 
of t/Jo.] Now take the transform (11) of (B2) , and 
follow with the Mellin transform (21), using the 

substitution (28). As usual, reverse the order of 
integration to perform the t/J integration first. For 
large n, only small cJ> contributes to the cJ> integral, 
and we may hence make the approximation 

cosh. cJ> - cosh. cJ>0 I'J !(cJ>2 - cJ>~). (B3) 

It is then a straightforward matter to perform the 
t/Jo and cJ> integrations, and one finds that 

~ -t AM [1 + o(!)]. (B4) 
8'1ln ()._ .. ) (2'1rn)2M n 

Application of (20) then shows that 

(B5) 

One can arrive at (B5) more directly by noting that 
the bounds (B2) are independent of the detailed 
structure of the ladder graph. The corresponding 
bounds on E .. coalesce for n -t co since the eHM

-
2
). 

factors become negligible in comparison with the 
e-<n+1). factor in the transform (11). Then every 
ladder graph kernel of Mth order is equivalent as 
n -t co to an !M-fold iterated bubble kernel, for 
which [by (24)] (B5) can be seen immediately to 
hold. 
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A generalization of a non-Hilbert-space formalism, developed in two previous papers, is presented. 
In this generalization observables with a many-dimensional spectrum are considered. Furthermore, 
the fundamental mathematical tools are generalized by introducing generalized functions instead of 
measures. It is then proved that a physical equivalence of the present formalism with the Hilbert­
space formalism can still be established. 

1. INTRODUCTION 

OUR aim in the present note is to generalize 
the formalism of Ref. I-to which we refer 

M the .c-formalism. We do that in Sec. 2. In the 
rest of the sections we investigate the relation of 
this formalism to that of conventional Hilbert space. 
Mter establishing, in Sec. 3, the concept of the 
Hilbert-space representation of the .c-formalism, we 
prove in Sec. 4 the existence of such a representation. 

We base the present oC-formalism, as we did in I, 
on two fundamental concepts-the set e of observ­
abIes and the set s of all physical states. These two 
sets constitute the set oC, representing the present 
theoretical "language". We construct the oC-for­
malism by endowing the set oC with a certain struc­
ture-imposed on it in the form of four axioms. 

By comparison with the formalism brought forth 
in I, the first generalization consists in considering 
observables a with an n-dimensional spectrum 
8 a (n = 1, 2 ... ), i.e., with a spectrum which is 
a subset of an n-dimensional Euclidean space R"'. 

The second essential generalization concerns the 
fundamental mathematical structure of the concept 
of physical state introduced in 1. There, a physical 
state P was defined in tenns of complex probability 
measures.2 

P(B) , BE CB", a E 0, (1.1) 

i.e., normalized complex measures defined on the 
family CB ex of all Borel sets in the Euclidean space 
R'" adjoined to a. It is easy to see that to any such 

* Present address: Theoretical Physics Institute, Uni­
versity of Alberta, Edmonton, Alberta, Canada. 

1 E. Prugovecki, J. Math. Phys. 7, 1054 (1966); and 7, 
1070 (1966); hereafter referred to as I and II, respectively. 

2 Contrary to the notation used in I and II, we drop the 
Buperscript on an element of the set S constituted of n-tuples 
of elements of S-except when ambiguities might arise. Thus, 
we write a instead of ex if a E 0, and in general x instead of i 
for an element of S. 

object can be assigned uniquely a continuous linear 
functional 

t E !j)~, (1.2) 

on the space !j)~. The space !j)~ consists of all con­
tinuous functions t(X), X E R '\ of compact support 
on the Euclidean space R a. This space is the count­
able union3

•
4 of the normed spaces !j)"(r) (r = 

1,2,3, ... ), consisting of all continuous functions t(X) 
in R'" with the support within the set {X : IXI ~ r}.6 
The nonn of an element t(X) E 5)a(r) is defined as 

Iltll = suprem It(X) I· (1.3) 
AERO 

Due to a well-known theorem by Riesz,6 to every 
continuous linear functional on 5)~ can be M­

signed2
•
3 a finite complex measure by means of 

which it can be written in the form (2). 
It is interesting now to establish whether we can 

build the oC-formalism not only in terms of linear 
functionals of the above type, but also in terms of 
more general linear functionals, which are continuous 
on other types of fundamental linear spaces of test 
functions. Namely, if such a formalism would be 
adopted, then this would prevent the introduction 
of observables called "questions"-which form the 
basis of the Birkhoff-von N eumann7 lattice approach 

a I. M. Gel'fand and G. E. Schilow, Verallgemeinerte Funk­
tionen (Deutscher Verlag der Wissenschaften, Berlin, 1962), 
Vol. 2. An English translation by G. Tesch of this volume IS 
in preparation. We very often follow the terminology intro­
duced in this book. 

4 A condensed exposition in English of most of the contents 
of Ref. 3 can be found in the first four chapters of the book: A. 
Friedman, Generalized Functions and Partial Differential 
Equations (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 
1963). 

6 If X E R ", where R" is an n-dimensional Euclidean space 
and A =(AI, '" ,An), then IAI denotes (X~ + ... + x!)t. 

6 F. Riesz and B. Sz-Nagy, Functional Analysis, translated 
by L. F. Boron (Frederick Ungar Publishing Company, New 
York, 1955), p. 110. 

7 G. Birkhoff and J. Von Neumann, Ann. Math. 37, 835 
(1936). 

1680 
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to the formalism of quantum mechanics. The issue 
of not being able to introduce liquestions" in a quan­
tum mechanical way is directly related to the prob­
lem of whether it is meaningful to attach a prob­
ability to the outcome of a measurement in an 
absolutely sharply defined region of the spectrum 
of any observable with a continuous spectrum. Con­
siderations like those of Bohr and Rosenfeld8 and 
Heisenberg, II which have motivated the introduction 
of "smeared" fields in quantum field theory,lO make 
this point worth considering. 

As there is no theory of measurement which might 
indicate which fundamental spaces of test functions 
are worth considering, we will keep our considera­
tions most general in this respect. 

We define the concept of a probability functional 
by the following construction. 

In the considered theory in which the set e of 
all obRervables is given, we assign to each single 
observable a a space g:a of functions f(X) defined 
on R", which fulfills the condition of a fundamental 
space in the Gel'fand sense,3 or is a union of topo­
logical products of such spaces (see Sec. 2, Axiom IA) 
in case that a denotes an ordered finite set of ob­
servables. We require that g:", a E 0, is a complete 
normed or countably normed space, or a countable 
union of such spacesll of P times differentiable 
[p=(O,'" ,0), (1,0",' ,0)"", (+00,"', +00)]12 
complex functions defined and finite at each point 
of R a

• 

If it is required that the functions f(X) in g:a, a E e, 
are differentiable at most P times, where P is an 
s-tuple of finite integers, then g:" should be a normed 
space or a countable union of such spaces possessing 
the following structure: There should exist a real 
function M(X) ;;::: 1, X E R", having at each point 
a finite or infinite value and continuous on the set 
fX : M(X) < + oo}, i.e., on the subset of R" on 
which it has finite values. Each function f(X) E g:" 
should be identically zero on the set R; = fX: 
M(X) = + 00 }, i.e., if M(X) = + 00, then f(X) = 0, 

8 N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab. 
Selsab., Mat.-Fys. Medd. 12, No.8 (1933); Phys. Rev. 78, 
794 (1950). 

9 W. Heisenberg, Verhandl. Sachs. Akad Leipzig 83, 3 
(1931); 86, 317 (1934). 

lOR. F. Streater and A. S. Wightman, PCT, Spin and 
Statistics and All That (W. A. Benjamin Company, Inc., New 
York, 1964). 

11 See Ref. 3, Chap. 1, Sec. 8. 
12 Assume that R" is an s-dimensional (Euclidean) space 

and>- = (XI, ... , X.) represents a point in R a. If P = (Ph"" p .), 
then a p-times differentiable function I(X) is a functlOn which 
is Pk""tlmes continuously differentiable in the argument 
Xk(k = 1, ... , s). If Pk = 0 then I(X) is just continuous in Xk 
while Pk = CD indicates that f(X) is arbitrarily many times 
differentiable in the variable Xk. 

f E g:". Then we define 

Ilfll = sup M(X) IDOf(X) I, (1.4) 
AER" 

where 

aIOlf(X) 

a}..~' ... a}..!' ' 
Iql = ql + ... + q., (1.5) 

if R" is an s-dimensional space; here q ::s; p means 
that q1 ::s; PI, ... , q. ::s; p. and M(X) IDkf(X) I is 
taken equal to zero when M(X) = + 00. 

The more general case of a countable unionl3 of 
such spaces which we consider occurs when we have 
an infinite sequence 

1 ::s; M I (}..) ::s; M 2 (}..) ::s; .•. ,X E R", (1.6) 

of functions of the above type, and to each such 
function Mk(X), k = 1, 2, 3, ... , corresponds a 
normed space g:~ of the above introduced type with 
a norm defined by (1.4); the finite number p for 
which D'Pf(X) is required to exist and be continuous 
for any f(X) E g:~ is taken to be the same for all k. 
It is easy to check that we can introduce indeed the 
countable union g:" of all the spaces g:~, k = 1, 2, 3,' . '. 
The earlier mentioned space :D~ is an illustration 
of such a kind of object representing the case when 
p = (0, "', 0) and 

M k (}..) = {I, 
00, 

I}.. I ::S;K, (1.7) 
Ixi > K. 

The most general type of countably normed spaces 
that we consider occurs when we are dealing with 
spaces of functions that are arbitrarily many times 
differentiable with respect to at least one of the argu­
ments, i.e., Ipi = + 00 • In that case we assume again 
that there is given in R" a sequence (1.6) of functions 
Mk(X) having the above-mentioned properties. We 
have g:" = (''':-1 g:~, where each g:~ is a complete 
normed space of p times differentiable functions 
which identically vanish together with all their 
derivativesonR;= {X:Mk(X) = + 00, k= 1,2," '1.14 

The norm in g:~ is defined as equal 

Ilfllk = sup M k (}..) IDOf(}..) I· (1.8) 
AERG 

1.1 Sk •• S'P 

13 We are, naturally, talking of a slight modification of the 
concept introduced in Ref. 3, Chap. 1, Sec. 8, which applied to 
unions of countably normed spaces. 

14 In case that we have a sequence (1.6) of functions 
Mk, k = 1, 2, ... , it is assumed that all of them will have 
the value CD for (and only for) a point belonging to a set R1} 
(which for some Gel'fand-type spaces can be empty). 
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In Ref. 3 it is shown that the so defined g:" is 
indeed a countably nonned space. An example of a 
space of this type is the S space of faster-then-poly­
nominal-decrease-at-infinity functions on which the 
tempered distributions are defined. 

The definition of spaces which are countable 
unions of countably normed spaces proceeds along 
the indicated lines in an expected fashion. 

We call any space of functions of one of the 
above-described forms a Gel'fand-type space of 
functions. 

In order to define now the concept of the prob­
ability functional intended to replace the concept 
of complex probability measure, we are concerned 
with the properties of such functionals corresponding 
to the following properties of complex probability 
measures: 

Each complex probability measureP"(B), BErea, 
corresponding to the ordered set a of observables 
is normalized in the sense that 

(1.9) 

Besides, due to the continuity from below of any 
measure, we have 

(1.10) 

if Bl) B2, ••• E rea is a sequence of Borel sets 
having the property that, for any bounded set .:l, 
we can find an no(.:l} such that all B", n ~ no(.:l) , 
are contained in R a - .:l. 

In order to generalize property (1.10) we introduce 
the concept of the zero-approximating sequence 

a E 0, (1.11) 

as a sequence of uniformly bounded functions 

IMA) I :S C, k = 1, 2, "', (1.12) 

having the following additional property: for any 
bounded subset .:l of R" there can be found such 
an no(.:l) that the support of all I .. , n ~ no(.:l), lies 
within R a - .:l. 

Similarly, a uniformly bounded sequence (1.11) 
is called an identity-approximating sequence if for 
each closed bounded subset .:l of R" there can be 
found an no(.:l) such that I .. (A) = 1 for all A E .:l 
and n ~ no(.:l) (if in addition .:l (\ R;; = )2f in case 
that R;; ~ )2f). 

In Sec. 2 (Axiom IA) we see that in the present 
formalism we attach to each n-tuple a = (al) ... , a,.) 
of observables a direct product 

(1.13) 

of the spaces g:a" ' .. , g:a 3 attached to the individual 
observables al> ... , an, respectively. A sequence 

(1.14) 

of n-tuples 

MAl, ... , x,.) = [fkl(Al), '" , Ib(x,.)], 

(1.15) 

of functions belonging, respectively, to g:"', ... , g:a. 
is called an identity-approximating sequence in 
g:,,,x,"a., if each of the sequences 

j = 1, ... ,n (1.16) 

is an identity-approximating sequence in the respec­
tive space g:"'. 

A probability functional in the space g:"'x",x", is 
a functional which is linear and continuous on each 
of the space g:"', ... , g:a. separately and which has 
the additional properties that 

(1.17) 

for any zero-approximating sequence from some 
fixed g:" I and 

lim F"(I .. ) = 1 (1.18) 

for any identity-approximating sequence (1.14). 

2. THE BASIC AXIOMATIC STRUCTURE FOR 
THE .c FORMALISM 

In formulating the basic axioms we follow to some 
extent the exposition of I in order to make obvious 
the way in which the axioms of I, Sec. 2.2 have 
been generalized. Thus, many of the remarks oc­
curring in I, which are not repeated here, are easily 
transferable to the present case in an obvious way. 
But first, it is necessary to introduce some convenient 
notational agreements. 

If a = (ai, ... , am) E e and fJ = (fJl, ... , fJ .. ) E e 
then a X fJ will denote the ordered set (ai, ... , am, 
fJl, ... , fJ .. ) E e. Similarly, if we have adjoined to 
a, fJ E 0 the spaces g:" and g:/3, and II E g:", 12 E g:/3 
then 11 X 12 denotes the ordered pair of functions 

[fl(Al) , MA2)] 

= MAl) X MA2), Al E R", A2 E RII, (2.1) 

on the spaces R", R/3; naturally for the present there 
is no relation between II X 12 and some space g:"xlI, 
which we do not even yet require to exist. 

Assume now that to each finite ordered set a E e 
of observables it is assigned a space g:" of test func­
tions [which might be, naturally, of the form (1.13)]. 
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Take aI, .•. , a .. E 0 and assume that we have a func­
tional F"',X"'Xh(J) defined for each I E 5=", ••••• " •• 
If MAl), .•. , I .. (}.".) are functions belonging to 
5="", ••• ,5="., respectively, and such that the function 

[f1 X ... X f .. ](>-1I ••• , }.".) = [f1(>-1), ••• ,f .. (}"")], 
(>-11 ••• , }.".) E R"'x",x"., (2.2) 

belongs to 5="'x",x"., then the symbol 

F",,"·,a.(J1 X '" X In) (2.3) 

means that, in determining the value of r"' .. ·· "'. 
at the point fl X ... X In, the kth factor in II X 
... X II; X ... X I .. refers to the kth ordered 
set aJ; of observables between the two semicolons. 
It is easily recognizable that this notation cor­
responds to the one systematically used in I and II. 
Notation (2.3) has to be carefully distinguished from 
the symbol F"'····.,h(Jl X ... X In) which is 
introduced next. 

In Axiom I we introduce the set (9 of all observ­
ables, while a physical state F will be defined as a 
family 

F = {Fa :a E e} 
of functionals Fa defined on 5=". If the relation 

F~';Y;Il'(/l X h X gl) = F;,,"{;fJ'(/2 X h X g2), 

'Y E 0, h E 5=\ 

(2.4) 

(2.5) 

is true for the physical states F t and F2, for given 
aI, Ph a2, P2 E 0, II E 5="', gl E 5=1l" 12 E 5="", 
g2 E 5=fJ', and for all 'Y E 0, h E 5="{ then we write 
shortly 

F:""'(Jt X gl) = F;"Il'(/2 X g2)' (2.6) 

In general, if in a certain relation involving physical 
states the "variables" Vt, ••• , VI; appear, then the 
relation is true whenever VI, .,. , VI; are replaced 
by any t~constants" 'Yl, ... , 'Y" E 0, and any elements 
of 5="{', ••• , 5=H, respectively, are inserted as argu­
ments. For example, the latter appearing relation 
(2.11) is equivalent to the relation 

FIl,a';O"'''.'''{(g X II X ... X I .. X h) 

= F/l"r:"([g X (fl'" In) X h] (2.7) 

valid for any p, 'Y E 0 and any g E 5=/l, h E 5="{. 
We might mention at this spot that if III ... , I .. 
are elements of 5='" then 11 ... In denotes the func­
tion16 (n ~ 2) 

15 It is indeed easy to check on basis of properties with 
!Vhich 5''' is endowed (Sec. 1) that/l ... j .. belongs indeed to 5''' 
If /1, ... , / .. E5'''. 

[fl .•. I .. ](A) 

= ft(>-) .•• I .. (A) E 5='" , AER", (2.8) 

Axiom I 
In order to have an .c formulism (or.c language) 

it is necessary to have a set (9 (called the set of 
observables), a rule assigning to each element a 
belonging to the family 0 of all finite ordered sets 
of elements of (9 a fundamental space 5=" of test 
functions, and a set S of families (2.4) of probability 
functionals F" defined on 5=". The following funda­
mental requirements have to be fulfilled: 

(A) The space 5='" associated with any finite 
ordered set a = (aI' ... ,an) ofobservablesat, ••. ,a,. 

consists of all functions 

II X ••• X I .. , II E 5="', ••• J I E 5="0, (2.9) 

(B) If a E 0 and if III 12, ••• E 5='" is an identity­
approximating sequence then 

for any FE s. 
(C) If ai, .•. , a .. denote the same observable 

a then16 

F""'·'·"'''·''(/I X ... X I .. ) 
= F ...... (/I .• , I .. } (2.11) 

for any F E S and any II, '" • I .. E 5=". 
CD) For any observable a, any real nonnegative 

test function I E 5=" and any physical state F 

(2.12) 

The axiom just formulated should be compared with 
Axiom I in I, Sec. 2.2. The present points B, C, D, 
correspond to that axiom, while point A introduces 
a feature which makes the present formulism dif­
ferent in this respect from that of I. Namely, the 
case corresponding to the generalization of the ap­
proach adopted in I would occur if we would asso­
ciate a linear space of test functions with each finite 
ordered set of observables. Instead, Axiom IA was 
chosen because it imposes a weaker demand on the 
introduced axiomatic structure and greatly simplifies 
the proof of the physical equivalence of the present 
formalism with the Hilbert space formalism. 

It should be mentioned that Axiom IA is the most 
flexible part of the presently introduced axiomatic 
system. A number of alternatives is possible which 
would introduce either no change or only minor 
modifications in the later proof of the physical 
equivalence of the present formalism to the Hilbert 
space formalism. One of these alternatives which 
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might be worth considering in order to make the 
notion of an observable (which is a function of other 
observables) more general is the following: linear 
Gel'fand-type spaces of test functions would be asso­
ciated with finite sets of compatible observables 
while with an ordered set a of incompatible ob­
servables we would associate unions of direct pro­
ducts of the spaces corresponding to each partition 
of the set a into subsets of compatible observables. 

This brings us to the notion of compatible ob­
servables which, from the formal point of view, is 
introduced by the following definition: 

Definition 1: The set {al> '" , a .. } is called a set 
of compatible observables if and only if 

P""';''';'''''C/I X ... X In) 

From (2.13), (2.17) and an application of Axiom IB 
it follows that Fa, •... ;a·C/I X ... X fn) ~ Fa'Cfl)' 
A similar procedure yields that Fa'(fl) ~ 1. Q.E.D. 

We can now define the concept of equality of 
elements of Sand ° in the same way as it was 
done in I (Axioms II and III). 

Definition 2: Two physical states F 1 and F 2 are 
said to be equal, symbolically written F 1 = P 2, if 
and only if 

F~(f) = F~(f) 

for all a E 0, f E 5'a. 

(2.19) 

Definition 3: Two observables a, {3 are said to be 
equal if and only if 

(2.20) 

X 11 E 5'a" •• , , In E 5'''', 

for any F E S and any permutation kl' 
the indices 1, ... , n, and if also 

(2.13) and if also 

, k" of (2.21) 

FE S, (2.14) 

for any real nonnegative test function f E 5'a,x,,,xao• 

If the ordered a = (ai, ... , a,,) is a set of com­
patible observables, then we write symbolically 
{ai, .. , ,a..} = C or shortly tal = c. 

Proposition 1: If al,' .. ,a" EO and {al,' .. ,a .. } =C 
then for any 

o ~ MAk) S; 1, Ak E R"·, k = 1, '" ,n, (2.15) 

for all f E 5'a == 5'P. 
We note that, among other things, relation (2.20) 

implies that if a = (3 then both observables are of 
the same dimension. 

It is obvious that the following relations (2.22) 
and (2.23) are equivalent ways of writing, respec­
tively, relations (2.19) and (2.21): 

F;';''';''"(fl X .. , X In) 

= F;';''';'''(fl X ... X In), al,"', an E 0, 

we have (according to Axiom ID the order of 11 E 5'a" ..• , In E 5'''', n = 1,2, "', (2.22) 

ai, '" , an irrelevant) F"f";"';'Ym';«;'Y''';''';'Y.'' 

k = 1, ... ,no (2.16) 

Proof' Because of (2.13) and (2.15) F"'; ... ;a_ X 
(fl X· .. X in) ~ O. A glance at the definition of 5''', 
a E 0, shows that it is possible to find such identity­
approximating sequences Ikl1 ik2, ... E 5'''" (k = 
2, 3, ... , n) that fkl = ii. The sequence 

121 X ... X tnt' 122 X ... X 1102, ••• , 

E ff"'X"'X'" (2.17) 

obviously is an identity-approximating sequence in 
5'",x,,·x"-. Standard methods3

•
4 would enable us to 

construct Ikl' h2' '" (k = 2, 3, ... , n) so that 

l = 1,2, ..•. (2.18) 

X (ft X ... X 1m X h X gl X ... X gn) 

X (fl X '" X 1m X h X g} X ... X g,,), 

FE s, h E ff" == ff'\ 'YL"', 'Y~' EO, 

fl E 5'''f'', .•. ,Un E ff'Y
o", 

m, n = 1, 2, ... . (2.23) 

When Axiom IA is replaced with a more involved 
assumption, it is important to do that in such a 
fashion that (2.22) and (2.23) are sufficient and 
necessary conditions for the equality of, respectively, 
two physical states and two observables. 

We can now introduce a topological structure in 
the space S of all physical states. A subset of S 
of the form 
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{F: Ir(fl) - F~(fI)1 < E, ••• 

Ir(f .. ) - F~(f .. ) I < E I (2.24) 

is called a weak neighborhood of the physical state 
F o. The topology in which a neighborhood basis of 
an element Fo of S consists of all sets (2.24) cor­
responding to all a E 0, fl' ... ,f" E g:a (n= 1, 2, ... ) 
and all E > 0 is called the weak topology in S. 

Our next axiom endows S with some structure 
by making it a convex and weakly closed topological 
space. 

Axiom II 

(A) If F I , F2 are any two elements of Sand 
o ~ t ~ 1 then the set of all probability functionals 

tF~(f) + (1 - t)F~(f), (2.25) 

corresponding to all a E 0 determines a (unique) 
physical state F, i.e., S is a convex set. 

(B) If Fh F 2 , ••• is a Cauchy sequency in the 
weak topology of S, then it has a limit belonging 
to S, i.e., S is closed in the weak topology. 

We would like to remark concerning Axiom IIB, 
that the limit of a Cauchy sequence of continuous 
linear functionals on g:a, a E 0, is again a continuous 
bounded functional. 16 As the weak neighborhoods 
of physical states have a more direct empirical 
significance than the states themselves/ 7 Axiom lIB 
represents more a convenience than a serious re­
striction on the structure of S. 

In order to define the concept of spectrum, we 
introduce the concept of a zero modulo S test function 
f E g:a [symbolically f = 0 (mod S)]; it denotes a 
test function for which r (f) = 0 for all F E s. 
A subset B of R a is called a zero subset of R a if all 
test functions in g:a with a support entirely within 
B are equal to zero modulo S. 

Definition 4: A point X in R a, a E 0, is said to 
be a point of the spectrum of a if all intervals in 
R a containing X are nonzero subsets of R a. The set 
of all such points is called the spectrum S a of a. 

It is obvious that: 

Proposition 2: The spectrum S a of any a E 0 is 
a closed subset of R a. 

Our next axiom imposes some restrictions on the 
structure of the spectra. 

16 Ref. 3, Chap. I, Sec. 5.6. 
17 E. Prugovecki, "On a Theory of Measurement of I ncom­

patible Observables in Quantum Mechanics" (to be published). 

Axiom III 

(A) If ai, ... , a" are any n observables 
(n = 1,2, ... ) then 

(2.26) 

(B) If {a I = C, a E e, and I is an interval 
in R a containing a point of the spectrum S a of a 

and such that I n R; = 0,14 then for each f E g:a 
having the property 

f(X) = 1, X E I, (2.27) 

there is such an F E S that 

r(f) = 1. (2.28) 

It has to be remarked that in case {ai, ... , a" I = C, 
Axiom III(A) is a consequence of the Definition la 
and of Proposition 1; this can be proved in much 
the same manner as Proposition 6 in I, Sec. 2.2, 
has been proved. 

We have reached the stage where we are able 
to introduce the concept of a function of observables. 
In order to find a suitable definition of this concept, 
we turn first to the definition of this concept in I, 
Sec. 2.2. In that case if a E 0 and !p(X) is a Borel­
measurable function on R a

, we define (3 !p(a) as 
that observable for which 

(2.29) 

To see how this definition can be formulated when 
the complex probability measures pa(B) are re­
placed by probability functionals Fa(t), f E 5)~, 

we write according to (1.2) 

F~(f) = f t(X) dP~(X) = f t(X) dP<pCa'(X) 

= f t(X) dpa(!p-I(X» = f t[!p(X)] dP"(X), 

where we used the notation 

pa(X) = pa(Bx), 

Bx = (- (Xl , X). 

(2.30) 

(2.31) 

We have to take into consideration that, in order that 

(2.32) 

we must require that f[!p(X)] E g:a. 

N ow that we have the clue, in order to make 
our definition perfectly general and meaningful, we 
have to introduce the following auxiliary spaces of 
functions. 

We denote by g:a ({3) the set of all functions 
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~(A), A E R", with domain of definition R" and 
domain of values RII which are such that all functions 

f[cp(A)] , A E R", (2.33) 

belong to 5''' for a set of functions f E 5''' everywhere 
dense in 5'''. 

Definition 5: We say that the observable (3 is a 
function of the observable a if there exists a function 
cp(A), A E R", belonging to 5'''(a) which is such that 

FII(f) = F"(f[~]), f[cp] E 5''', (2.34) 

for all F E S; here the f[cpJ's denote the functions 
(2.33) belonging to 5'''. In that case we write (3 = ~ 
(a),~ E 5'''(a). 

It might naturally happen that, for given spaces 
5''' and 5''', the space 5'1I(a) is empty due to the fact 
that the spaces 5''' and 5'11 might be of a different 
nature. This feature of the formulated framework 
which makes the explicit giving of the space 5'a for 
each a E e essential prevents us to introduce an 
axiom like Axiom IV in I, Sec. 2.2. Namely, for a 
given fundamental set of observables, the definition 
of all possible versions of functions of these observ­
abIes would present a cumbersome task of a com­
pletely formal character and not serving any real 
purpose or introducing any simplifications. A weaker 
version is introduced instead. 

The following convenient notation is introduced: 
If a denotes the n-tuple (ai, ... , an) E 0 then 

we denote with a* the n-tuple (am ... , al) E O. 
Similarly, A * denotes the point (An, ... , AI) of R a' 
if A stood for the point (AI, ... , An) of Rei. If f(A), 
A ERa, is a function belonging to 5' a and if f stands 
for it as an element of 5'a, then f* denotes the element 
of 5'a' which is equal to the function f(A *), A * ERa *. 

Axiom IV 

For any F E S and any (3 E 0 the expression 
n 

M = L: ti,a jF"*:II(gr X gj) (2.35) 
i .i-1 

is nonnegative for arbitrary g11 ... , g" E 5''' and 
arbitrary complex numbers ai, ... , an (n = 1,2, ... ). 
If (2.35) is positive for some choice of gl, ... , gn E 5'11 
and ai, ... , an E C\ then there exists a physical 
state Fl for which 

n 

F a(t) M-l "" - FP':":P( * f ) 1 = LJ a,aj g, X X gj (2.36) 
i. i-I 

for any a E e, f E 5'''. 

It is easy to see that the following proposition 
represents in fact an equivalent of Axiom IV. 

Proposition 3: For any F E S and any {3l' 
(3n E e 

• 
M = L: ti,a jF II": III(hr X hj) ~ 0 

i. i-I 
(2.37) 

for all hi E 5'11" ... , hn E 5'11. and all complex 
numbers all ... , an. If lvI > 0 for some choice 
of hi, ... , hn and ai, ... , an then there exists an 
FI E S for which 

n 

F~(t) = M- l L: ti,ajFII,*:a:Pi(M X f X hj) (2.38) 
i, i-I 

for all a E e, f E 5'a. For all a E e, f E 5'a and·all 
F E S it is also true that 

r(t) = r*(f*). (2.39) 

To see that the above proposition is true we have 
to write in (2.35) and (2.36) {3 = ({3l, ••. , (3n) and 
insert 

k = 1,2, (2.40) 

instead of g. into (2.35) and (2.36); here each 
sequence 

(0 (0 PI gil , gj2 , ... E 5' , i, j = 1, ... ,n (2.41) 

is taken to be an identity-approximating sequence. 
We obtain thus (2.37) and (2.38) as a limit from 
(2.35) and (2.36), respectively, by using Axiom IB. 

By choosing n = 2, taking {3l E 0 arbitrary, 
(32 E 19, and making use of an identity-approximating 
sequence to replace h2 E 5'P', it is easy to derive that 

tilalFP":II'(hf X hi) + tilFII'*(M) 

+ alFII'(h1) + 1 ~ o. (2.42) 

From this (2.39) follows directly if we denote {31 

with a and hi with f. 

3. CONCEPT OF A HILBERT-8PACE 
REPRESENTATION OF THE .c FORMALISM 

We now investigate the relation of the introduced 
.c formalism obeying Axioms I to IV in Sec. 2 to 
the Hilbert-space formalism. We do that by intro­
ducing the concept of the Hilbert-space representa­
tion of the .c formalism in a manner similar to that 
of II, Sec. 1. However, our generalization of the 
formalism given in I and II has some new pecu­
liarities which have to be analyzed in order to clarify 
the meaning of a Hilbert-space representation. 

First we have to introduce, as in I and II, the 
set eb of all bounded observables. In this context 
an observable a is called bounded if its spectrum 



                                                                                                                                    

A FORMALIS M FOR GENERALIZED QUANTUM MECHANICS 1687 

S" is a bounded set in R a. If a is a one-dimensional 
observable then we associate with it the bound 

Iiall = sup IAI· (3.1) 
AES· 

If a is an s-dimensional observable then the bound 
of a cannot be introduced in a meaningful and useful 
way. Under certain circumstances it might be con­
venient to denote by Iiall the following s-tuple: 

Iiall = (ilallo), .. , , Iiallco», (3.2) 

where Iiallck), k = 1, ... , s, is defined as 

I\allck) = sup jAkj, A = (AI, ... , A,) ERa. (3.3) 
AES· 

The reason for this definition of Iiall can be illustrated 
with an example. Consider a quantum-mechanical 
system of n particles and denote by XC!), '" , XCn) 

the x coordinate operators corresponding to the par­
ticles 1 to n, respectively. If the spectral decomposi­
tions of these operators are 

XCI) = J Al dE(!)(AI), ... ,XC,,) 

(3.4) 

then the operator ECk)(/k) is associated with the 
probability (wi ECkl (Ik ) Iw) that, in the physical 
state represented by the normalized vector W, the 
k particle has its x coordinate within the interval 
Ii regardless of the x coordinates of the rest of 
the particles. The probability that the first, second, 
etc. particle has its x coordinate within, respectively, 
117 12 , ••• , is 

('It \ Em(Il) ... ECn)(In) \'It), (3.5) 

and is therefore associated with the operator 

(3.6) 
I1X···XI. 

It is, however, clear that the norm of the operator 
(3.6) does not convey any relevant information; it 
is rather the norms of Iri Ai dEmC'Ak), k = 1, ". , n, 
that are of significance. 

A set e of observables is called a set 01 compatible 
observables if any finite subset of e consists of com­
patible observables. We denote by mt. the family 
of all maximal sets of compatible bounded observ­
abIes. In this context we call a set e of compatible 
bounded observables maximal if any other set of 
compatible bounded observables containing e is 
identical with e. 

The following proposition can now be proved in 

precisely the same manner as Propositions 1 and 3 
in I, Sec. 3.2, was proved. 

Proposition 1: Each bounded observable belongs 
to at least one maximal set of compatible bounded 
observables and consequently Ob = UeEmt. e. 

Due to the fact that we have not included among 
our axioms the equivalent of Axiom IV in I, Sec. 2.2, 
we cannot expect that the sets e can be made in 
general into normed real algebras. Consequently, 
we have to devise a new approach to the problem 
of defining a Hilbert space representation of our 
£ formalism. We do that in such a manner as to 
comply with the customary attitude adopted in 
quantum field theory. 

Definition 1: A smeared observable is, by defini­
tion, any ordered pair (a, f) consisting of an ob­
servable a E 0, and a test function I E 5"". The 
set of all smeared observables 

(a, f), 

is denoted by ~. 

a EO, (3.7) 

Definition 2: Two smeared observables (a, f) and 
({3, g) are called equal if and only if 

(3.8) 

for all FE S. 

It has to be remarked that a smeared observable 
is not an observable at all in the customary sense. 
For example, if I is a complex function, we cannot 
associate with (a, f), a E 0, a real spectrum. Other­
wise, it would be convenient to define physical 
states on 

n = 1,2, '" , (3.9) 

by writing 

pad!d •... aftUft)(y) = pa ..... a·[(fl X ... X f,,)g], 

(3.10) 

where II X ... X In is defined by (2.2). Namely 
due to Axiom lA, II X '" X In E 5"a,x"'Xaft and, 
therefore, 

(fl X ... X In)g = hgl X ... X fRg" 

E 5"a,x",xa ft , Al ERa., ... , An E Raft, (3.11) 

if g = gl X ... X Yn, where gl E 5"a" ... , gn E 5"a,. 
We can associate with a(f) E ~ an s-dimensional 

complex Euclidean space CaUl = CI X ... X CI 

(s times) in case that a is an s-dimensional ob­
servable. 
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Definition 3: A point A E cat!) is said to belong 
to the spectrum S" (f) of aCt) if for any interval con­
taining >- there exists a test-function with support in 
that interval for which r(f)(g) = F"(fg) F O. 

By using precisely the same technique we can 
prove also the following proposition. 

Proposition 4: Two smeared observables a(f), (3(g) 
are equal if 

A smeared observable aCt) is called bounded if 
F1,:a: 1'(hl X f X h2) its spectrum sa (!) is a bounded set in Ca(fl. 

It is obviously true that = F1,:13:1'(hl X 9 X h
2

) (3.17) 

Proposition 2: If gl, g2, ..• , E ff""X"'Xa. is an 
identity-approximating sequence in ff"'X' "X'" and 
al(fl), ... , an(f .. ) are bounded smeared observables 
then 

= lim F" a,(I,l.· ". a.(I.lo'(gk)' 
k-.co 

(3.12) 

We denote by 3"b the set of all bounded smeared 
observables a(f) corresponding to all a E 0, {a} = C, 
and all f E ffa with bounded support in R a. 

Proposition 3: If we have for F I , F2 E S 

F~(f) = F~(f) 

for all a(f) E ~b then FI = F 2 • 

(3.13) 

Take a to be a single observable. In order to 
prove the above proposition, we have to make use 
of a decomposition of the identity of the following 
form (which exists as is shown in the first volume 
of Ref. 3): 

el(A) + e2(A) + ... = 1, }.. E R"', (3.14) 

where el(A), e2 (>-), •.. are arbitrarily many times 
differentiable functions of compact support, having 
the additional property that 

o :::; ek(}..) :::; 1, }.. E R", k = 1,2, .... (3.15) 

By consulting the type of spaces introduced in Sec. 1 
we readily establish that ed E g:a if f E g:a. Due to 
the fact that we can choose 

n = 1,2, '" , 

to constitute a zero-approximating sequence and that 
the functionals F~ and F~ are linear we can write 
(3.13) in the form 

co co 

:E F~(ekf) = :E F~(ekf) (3.16) 
k-l k-l 

and the proof is completed for the case a E 0. 
The case when a denotes an ordered set of observables 
can be treated by generalizing the above procedure 
in a straightforward manner. 

for all F E S and for all 'YI(hl), 'Y2(h2 ) E ~b' 

Definition 4: We say that a Hilbert space X 
provides a representation for a given £ language 
if there exists an injective mapping 

a(f) = (a, f) ~ A",(f), 
(3.18) 

a(f) E ~b' A,,(f) E .IB(X) , 

of the set 3b into the C* algebra .IB(X) of all bounded 
operators on X, as well as an injective mapping 

F ~ {a'l'F, a E CI
}, 

(3.19) 
FE SO, 'l'F E X, II'l'FII = 1, 

of the set So of pure physical states into the set 
of all rays characterized by normalized vectors 
'liFE X, and having the following properties: 

a(t) E 3"b' 

(2) If aCt) E 3b is of the form 

a(f) = [al(f) , '" ,am(fm)], 

al(fl) , .,. ,am(fm) E 3"b 

(3.20) 

(3.21) 

then a(f) is mapped by (3.18) into the product 

Aa,(fl) ... A "mCtm) . (3.22) 

This mapping is such, that if for some (3(g) = 
[(3I(gl), '" , (3 .. (gn)] E ~b 

F""';"':"'m"(fl X ... X fm) 

= F"Il':"':(J'''(gl X '" X g .. ), (3.23) 

then 

(3.24) 

(this having as a consequence that smeared ob­
servables corresponding to compatible observables 
are mapped by (3.18) into commuting operators1. 

(3) Mapping (3.19) is such that 

r':"':"'n(tl X .,. X !n) 

= ('l'FI Aa,(fl) ... A"n(fA) I'l'F) (3.25) 

for any al(!l), ... , anCiA) E 3"b. 
(4) The closure of the linear manifold spanned 
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by the image of So into X is identical with the entire 
Hilbert space X. 

We note that from the physical point of view, 
it would be sufficient to require in (3) that the 
linear manifold spanned by the image of So is every­
where dense in X in the weak topology induced 
by (2.24). 

4. CONSTRUCTION OF THE B* ALGEBRA \ll 

In order to find a Hilbert-space representation 
of the introduced £ formalism, we follow the general 
pattern applied in II to the quantum-mechanical 
language formulated in I. We give, however, a much 
simplified version of that construction. This is due 
on the one hand to the mathematically more conven­
ient formulation in terms of probability functionals 
instead of complex probability measures (which 
renders some techanical details trivial) and, on the 
other hand, to the elimination of some restrictions 
(discussed in the next section), which are introduced 
in II. 

We begin our construction by considering the set 
~b of finite ordered sets of elements from I1b' and 
by introducing equivalence classes in ~b in the 
following way. 

Rule 1: Two elements [al(fl), ... a",(/ ... )] and 
[,Bl(gl), ... ,Bn(gn)] of ~b are equivalent if and only if 

p'.a';"';amh(/1 X ... X fm) 

(4.1) 

for all FE S. 
It is indeed very easy to check that the relation 

introduced by this rule is an equivalence relation. 
We denote by <P the set of all the equivalence classes 
of elements of I1b. 

Consider now the set C l X <P of ordered pairs 
(a, p) consisting of a complex number a and an 
element p of <P. We denote by <R the set of all equiv­
alence classes of elements of C l X <P defined by 
means of an equivalence relation given by the 
following rule. 

Rule 2: Two elements Ca, p) and (b, u) of Cl X <P, 
where 

p = [al(fl), •.. ,a",(fm)], (4.2) 

u = [,81 (gl) , ... ,,Bn(gn)], (4 .3) 

a(fl}, ... , ,Bn(gn} E I1b' are equivalent if and only if 

aFha,;".;a.h(f1 X ... X 1m} 

= bF"·fJ.;··· ; (J ... (gl X ... X gn) 

for all FE S. 

(4.4) 

We denote the equivalence class containing the 
element (a, p) E Cl X <P symbolically by ap. In case 
that p E <P contains the element [al(/l), an (fn)] 
of ~b' we write 

ap = aal(fl} 0 ... 0 £¥n(fn) (4.5) 

to denote the corresponding element of <R. We call 
expressions of the form (4.5) ordered products on I1b' 

Definition 2: The zero equivalence class of C l X <P 
is the equivalence class of all (a, p) E Cl X <P 
for which, if p is of form (4.2), 

ap'·a.; ... ;am"(fl X ... X 1m} = 0 (4.6) 

for all FE S. 

Consider now the family & of finite subsets 

(4.7) 

of <R. As each P E cR is a finite set, we can write 
(4.7) in the form 

P = {a~ll pO>, ... , a~~) p(l), ... , 

X a~') p"), .•. ,at) p(,) I, (4.8) 

where, in the sense of inequality of elements of <R, 

Ip(i) ¢' Ip(j) for i ¢' j, i, j = 1, ... ,s. (4.9) 

The element 
p = {a(ll p(l) , ... ,a(')p(')l, 

a(ll = a~ll + ... + a~~), ... , (4.10) 

a(') = a~') + ... + at), 

of at is called the stardand form of (4.7). 

Rule 3: Two elements of at are equivalent if and 
only if their corresponding standard forms are equal 
elements of at, i.e., identical finite sets of elements 
of <R. 

It is obvious that Rule 3 defines equivalence 
classes of elements of at. We denote by ~l the set 
of all this equivalence classes. If ~ is an element 
of ~l containing an element of & of form (4.7), then 
we write symbolically 

~ = alPI EEl •.. EEl anPn, PI,"', p" E <R. (4.11) 

Expressions of the form 

alall(fll) 0 ••• 0 alk. (Ilk.) EEl ... 
EEl an£¥,.l(fnl) 0 ••• 0 ank.(/nk.) (4.12) 

will be called polynomial forms over I1b' 

Lemma 1. Operations of addition, multiplication, 
and multiplication with a c number can be defined 
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in ~I in such a manner that ~I becomes an algebra. 
The zero element 0 and the identity element 1 

of ~I are those elements of ~I which are equivalence 
classes of elements of iR having as a standard form 
a set of elements of (ft consisting only of, respectively, 
the zero equivalence class of Cl X <P in case of the 
zero element, and of any acx(f) E Cl X <P for which 

FtJ;";'Y(g X f X h) = FtJ;'Y(g X h), ref) = 1, 

for all {3, 'Y E 0, g E gotJ, h E goY, and all F E S-in 
the case of the identity element. 

If ~I' ~2 E ~J and a E CI
, where 

~I = alPI EB ... EB amP"" 

~2 = bIO'I EB ... EB bnun, (4.13) 

aI, .•. , bn E Ct, PI, ••. Un E (ft, 

then the definitions are: 

Addition. The sum ~I + ~2 of ~l' b is defined as 

~I + ~2 = alPl EB ... EB a",p", 

EB blUl EB ... EB bnun• (4.14) 

Multiplication. The product h~2 of ~I' ~2 is de­
fined as 

~1~2 = alblPI 00'1 EB ... EB albnPI 0 Un EB ... 
EB amblP", 0 0'1 EB ... EB a",bnP", 0 Un, (4.15) 

where we introduce the notation 

pOU = cxI(fl) 0 ••• 0 cxr(fr) 0 (31(gl) 0 ••• 0 (3.(g.) , 

in case that 

CXI(fI), ... (3.(g.) E Db, (4.16) 

P = cxI(fl) 0 ••• 0 cxr(fr) , 

0' = (31(gl) 0 ... 0 (3.(g.). 
(4.17) 

c-number multiplication. The product a~l of ~l 
with the complex number a is defined as 

a~1 = (aal)PI EB ... EB (aam)p",. (4.18) 

The proof of this lemma proceeds in the same way 
as the proof of Lemma 1 in II, Sec. 2.1, and con­
sequently it is not reproduced. 

A * operation can be introduced in the algebra ~I 
by a method similar to that of Sec. 2.2 in II. First, 
for any element 

q = [CXI(fI), ... ,cxn(fn)] (4.19) 

of ~b we define U E go" denotes the complex con­
jugate of f E (f") 

(4.20) 

and then, proceeding in much the same fashion as 
in proving Lemmas 3 and 4 in II, Sec. 2.2, we can 
show: 

Lemma 2. A * operation can be introduced in 
~l in such a fashion that we obtain a * algebra ~2' 
This * operation maps the element (of the most 
general form) 

~ = alcxll(fll) 0 .•• 0 CXI/;.(flk.) EB ... 
EB ancxnlCfnl) 0 ••• 0 cxnk.Cfnk.) 

of ~2 into the element 

~* = alcxlk.(!lk.) 0 ... 0 CXll(fll) EB ... 
EB anCXnk.(fnk.) 0 ••• 0 cxnl(fnl)' 

C4.21) 

C4.22) 

As the next step we can introduce in ~2 a convex 
functional by means of which we will get out of ~2 
a normed * algebra ~3. To that purpose we first 
have to introduce a class of linear functionals on ~2. 

Lemma 3. Corresponding to each FE S, a linear 
normalized functional (0" ~ E ~2' can be intro­
duced, which, on an element ~ of ~2 represented 
by a polynomial form over Db having the general 
form (4.21), has the value 

(~)F = aIF
a .. ; •.. ;a···C!l1 X ... X flk.) + ... 

+ a",r'·;···;"···(fnl X ... X !nk.). C4.23) 

The proof of this lemma proceeds in the obvious 
way by showing that the functional 

([CXI(fI), ... cxnCf .. )]), 

= r';"';a'(fl X '.' X fn) C4.24) 

has the same value on all elements (4.6) of Db 
belonging to the same class of <P. The same is then 
shown for equivalence classes on C l X <P, i.e., for 
elements of (ft, in relation to the functional 

(OOI(fI) 0 .. , 0 cxnCfn»' 

= ar·;···;"·Cfl X .'. X in); (4.25) 

it is easy to see that besides the functional (4.25) 
is equal to zero on the zero equivalence class of 
Cl X <P. By establishing that the functional (4.23) 
defined on iR has the same value on any equivalence 
class of elements from (ft we establish that (4.23) 
defines a functional on iR which assigns a unique 
value to each element of iR, i.e., of ~l' It is then 
easy to prove that this functional is linear. The fact 
that it is normalized, i.e., (I), = 1, follows directly 
from (4.23) and the definition of the unit element 
of ~l' 
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Lemma 4. The functional (a .. (J .. ) 0 '" 0 al(JI) 0 al(fl) 0 ••• 0 a .. (f .. », 
(4.26) ~ (alai) 0 al(fl»,,(a .. (J .. ) 0 ••• 0 a2(J2) 

is convex, normalized, and everywhere finite on ~2' 
It also has the following properties: 

<p(~77) ~ <p(~)<p( 77), 

<p(~*) = <p(~), 

<p(~*~) = [<p(m\ 

~, 77 E ~2' 

~ E ~2' 

~ E ~2' 

(4.27) 

(4.28) 

(4.29) 

Proof: In order to prove this lemma we first have 
to establish the fact that the functional (4.26) is 
everywhere finite. In the course of doing this we also 
show that the linear functionals (~), are positive 
functionals for any F E S, i.e., 

(4.30) 

for all F E S. 

For any a E 0 and any f E 5''" satisfying the 
condition 

If(~) I ~ c, 
it follows from Proposition 1, Sec. 2., that 

o ~ r(m ~ C2
• 

(4.31) 

(4.32) 

Now, for any ~ written in the general form (4.21) 
we have according to Proposition 3, Sec. 2 

(~*~)F = t aia j r"; aiCt7 X !j) ~ 0, (4.33) 
i ,;=1 

where 

ai = ail X '" X aik" (4.34) 
fi = fil X .. , X !ik, E 5'a,. 

Consequently (~)F is a positive functional and we 
can applyl9 Cauchy-Schwartz inequality 

(4.35) 

in order to obtain 

l(al(!I) 0 ••• 0 an (! .. »p 12 

~ (a .. (J .. ) 0 '" oalUI) oal(ft) 0 ... oan(! .. »F' (4.36) 

We can derive, however, from Axiom IV (see also 
Hypoth~ses 2A and 2B in II, Sec. 2.3) that there 
exists such an FI E S that 

18 Unity-equivalent smeared observables might occur when 
observables with discrete spectrum, like spin components, are 
present. 

Ii M. A. Naimark, Normed Ring8, translated by L. F. 
Boron (P. Noordhoff Ltd., Groningen, The Netherlands, 
1959), p. 187. 

(4.37) 

Mter n - 2 further similar steps we get, by making 
use also of Axiom IC, Eq. (2.11), 

(a .. (Jn) 0 . " 0 al(JI) 0 al(fl) 0 ... 0 an(! .. », 

~ (aIUI) 0 al(ft)" ... (a .. -IU .. -I) 

o an-I(! .. -I»,._,(a .. (J .. ) 0 a .. (f .. »F 

= F~'Udl) ... F:~l'U .. -d"-I)r·u .. ! .. ). (4.38) 

Taking into consideration that al(fl), ... , .. (f .. ) a E Db, 
we must have 

(4.39) 

Applying (4.32), we finally derive from (4.36), (4.37), 
and (4.38) 

l(al(!I) 0 ••• 0 an(f"»F I ~ C1 ••• C.. (4.40) 

and thus we have that the functional (4.26) is finite 
at every point ~ E ~2' 

The fact that <p(l) = 1 is a direct consequence 
of the definition (4.23) and of the normalization of 
all functionals (01', F E S. 

For the proof of (4.27)-(4.29) and of the convexity 
of this functional, the proofs of the Lemmas 7 and 
8 in II, Sec. 2.3, can be consulted. Q.E.D. 

We note that the functional (4.26) satisfies all the 
conditions for being a norm with the exception of 
the following one: The relation <p(~) = 0 does not 
imply that ~ is the zero element of ~2' Therefore, 
we need the following lemma. 

Lemma S. The set 

I = {~ : <p(~) = 0, ~ E ~2} (4.41) 

is a two-sided ideal of the. * algebra ~2' The set 
~3 = ~d I of all residue classes modulo I is a 
* algebra, whose elements are denoted by the letters 
X, Y, Z, ... . A norm can be introduced in ~a 
by assigning to each X E ~3 the norm 

IIXII = <p(~), X E ~3' ~ E X (\ ~2' (4.42) 

where ~ is any of the elements of ~2 belonging to 
the residue class X. With the norm (4.42) ~3 becomes 
a normed * algebra. 

Proof: In order to prove that I is a two-sided 
ideal we have to show that I is a linear space and 
that, if ~ E I then 77~ E I and ~77 E I for all 77 E ~2 
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(besides, I certainly does not coincide with ~2 be­
cause already the identity of ~2 does not belong to 1). 
As the functional 4>W is convex we obtain for any 
~h ~2 E I and any complex numbers aI, a2. 

o ::; cI>(al~1 + a2~2) 
::; jaIl 4>(~I) + la21 4>(~2) = o. (4.43) 

This shows that I is a linear manifold. Furthermore, 
applying Schwartz-Cauchy inequality (4.35) we get 
for any ~ E I and any 1/ E ~2 

1«1/~)*1/~)FI2 ::; <~*~)F«1/*1/~)*1/*1/~)p = o. (4.44) 

This shows that I is a left ideal. To prove that I 
is also a right ideal we must make use of Proposi­
tion 3, Sec. 2. We can write ~*~ and 1/ in the form 
[consider the general form (4.21) of an element of ~21: 

m 

t*t - "" t t - (kJ(f(kJ) . . . (kJ(f(kJ) (4.45) ~ ~ - L..t akl;k J <;k - at 1 0 0 a mol: mll' 
k-l 

n 
"" (iJ (0) (0) (0) 1/ = ~ bi 1/i, 1/, = {31 (gl ) 0 ... o{3n, (gn,). (4.46) 
",-=1 

Introduce the notation 

(4.47) 

(4.48) 

We can now state on basis of Proposition 3, Sec. 2, 
that, in case 

n 

<1/*1/)F = L: b,bj(1/~1/j)F 
",;=1 

n 

= L: b,bjF!l";!l;(gT X gj) (4.49) 
i, ;c:l 

is greater than zero, there exists sllch an Fl E s that 
n m 

(1/*~*~1/)F = L: L: bibjak(1/~~k1/j)F 
i .1-1 1:-1 

n m 

= L: b,b j L: akF!l,·;a·;!l;(gT X fk X gj) 
i,;-1 k-l 

m 

X L: akF~·(M = <1/*1/)P·<~*~)F •. 
k-l 

As we assumed that ~ E I, we have according to 
(4.26) 

(4.51) 

Consequently «~1/)*~1/)p = O. In case that (4.49) 
is equal to zero and Proposition 3, Sec. 2, cannot 
be used, we can employ (4.35) to derive 

1(1/*~*~1/)pI2 ::; <'I/*1/)p«~*~1/)*~*~1/)p = O. (4.52) 

Thus in general we can say that 

(4.53) 

for all F E S. This means that cI>(~1/) = 0 and, 
therefore, ~1/ E I, i.e., I is a right ideal too. 

We can define now the sum X + Y and product 
XY of two elements X, Y of ~3 as the residue class 
modulo I containing ~ + 1/ and ~1/, respectively, 
where ~, 1/ are any elements belonging to the residue 
classes X, Y, respectively. It is mainly a standard 
task to show that the residue classes X + Y and 
XY are independent of the particular choices of 
~ E X and 1/ E X. The product aX of X E ~3 
with a c-number a is defined analogously as the 
residue class of all a~ where ~ E X. 

Due to the convexity of the functional cI>(~), 

~ E ~2' the value IIXII in (4.42) is also independent 
of the choice of ~ E X. Namely if ~l' ~2 E X then 

(4.54) 

and by reversing the roles of ~I and ~2 in (4.54) 
we derive that cI>(h) = cI>(h). Due to the construction 
of ~3, IIXII = 0 if and only if X = I. Thus the 
set I will play the role of the zero element of ~3 
and as such it is denoted from now on with the 
symbol O. Q.E.D. 

We denote by ~ the B* algebra which is the 
completion in the norm (4.42) of the algebra ~3' 
We denote the elements of ~ with the letters 
x, y, z, .... 

Rule 4: To each a(f) E Db assign an element 
L (f) of ~2 which contains 1a(f) as a standard 
polynominal form corresponding to the equivalence 
class of elements of cR represented by it. The cor­
responding elements of ~3 and ~ are denoted by 
Xa(f) and xa(f). 

We note that 

(~a(f»P = r(f), (4.55) 

and that due to Lemma 3 in general 

= Fa';"';a"(fl X ... X fn). (4.56) 

From (4.56) we can derive that the mapping 

a(f) -jo Xa(f), a(f) E Db, Xa(f) E ~3' (4.57) 
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is an injective mapping of Ub into &3 or &, respec­
tively, i.e., that a(t) ¢ (3(g) implies Xa(f) ¢ Yp(g). 
Namely, assume that Xa(J) = Yj3(g). This implies 
that 

t.(f) - Mg) E I, 

where I is the ideal (4.41). 
Take now arbitrary 

'YI = 'Y~l) X .,. X 'Y~) E e, 
'Y2 = 'Y~2) X X 'Y~2) E e, 

which are such that 

'Y~l)(h~I», ••• ,'Y~2'(h~2» E D'b' 

Introduce the shorter notation 

~"I,(hl) = ~"I>(,)(h:l) ..• ~"Im(,)(h~l), 

~"I,(h2) = ~"I' (.)(h~2» ... ~"I.(.)(h~2». 

According to (4.56) we can write 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

r ,;al"l'(h l X f X h2) - r ,;j3;"I'(hl X g X h2) 

But due to the definition (4.26) and the relation 
(4.27) and (4.28) we can derive by making use at 
the first step of the Cauchy-Schwartz inequality 
(4.35) : 

1(~"I1(hl)[~aCf) - ~j3(g)]~"IO(h2»FI 

::; « {[~a(f) - ~j3(g) ]~"I,(h2) I * [~a(f) - ~j3(g) ]~"I,(h2»F 

X (~"I1(hl)~"I1(hl)*)F)t ::; ~[~aCf) - ~j3(g)] 

(4.63) 

The right-hand side of (4.63) is equal to zero because 
~[~a(f) - ~j3(g)] = 0 due to (4.58). From (4.62) 
and (4.63) we get 

r,;a;"I'(hl X f X h2) = F"I1;j3;"I'(hl X g X h2), 

'YI, 'Y2 E e, f E 5'''11, g E 5'''1', (4.64) 

and this according to Proposition 5, Sec. 3, means 
that a(t) = f3(g). Therefore, the mapping (4.57) 
is injective and we can state the following. 

Theorem 1. There exists a B* algebra & (see 
Lemmas 1-5, this section) and an injective mapping 

(4.65) 

of the set Ub into &. The smallest closed * subalgebra 

of & containing the image of Ub under the mapping 
(4.65) is & itself. 

Each of the functionals (~)F' ~ E &2, induces a 
functional (X)F, X E &3, on &3 which can be 
defined as 

(X)F = (~)F' (4.66) 

We can easily establish that, for given F, (4.66) 
assigns a unique value to each X E &3' Namely, 
if ~, 71 E X then 

I(~)F - (71)1' 12 = (~ - 71)~ 

::; «~ - 71)*(~ - 71»1' = 0, (4.67) 

where the last step is a consequence of the fact 
that ~ - 71 E I. 

We note now that from the Schwartz-Cauchy 
inequality (4.35) it follows that for any F 

I(X)FI2 ::; (l*l)F(X*X)F, X E &3. (4.68) 

Hence each functional (X)F, X E &3, is uniquely 
extendible20 to a positive bounded linear functional 
(X)F. x E &. Consequently, with the help of (4.56) 
we arrive at the conclusion that the following is true: 

Theorem 2. To each F E S can be uniquely 
assigned a continuous positive linear functional on 
& having the property that 

(Xa,(fl) '" xa.(fn»F 

X fn) (4.69) 

for any al(JI), '" , an(Jn) E Ub. 

Theorem 3. The mapping (4.65) can be extended 
to 3b by assigning to each [a(JI), .•. lXn(fn)] E 3b 
the element X a1 (JI) ..• xa.(J,.) E &. If &. denotes 
the linear manifold spanned by the image of Ub, then 
&. is a * sub algebra of & which is everywhere dense 
in & in the norm of &. 

Clearly, the validity of Theorem 3 is due to the 
construction of & - &. being the image in & of 
the algebra &3 whose completion is & itself. 

5. THE HlLBERT-8PACE REPRESENTATION 
OF THE.£ FORMALISM 

We have seen in the last section that to each 
physical state F corresponds uniquely a positive 
continuous functional (X)F on &. It is easy to see 
that due to (4.69) and Proposition 3 in Sec. 3, the 
following lemma is true. 

20 Ref. 19, p. 258. 
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Lemma 1. There exists an injective mapping 

F ~ (x)" FE s, (5.1) 

of the set S into the set &' of all continuous linear 
functionals on & which assignes a positive functional 
to each F E S. Each of these functionals is normal­
ized, i.e., 

I (x), I ::; Ilx II· (5.2) 

We denote by X the image of $ in 21'. 

Lemma Z. The set X is a convex subset of &', 
closed in the weak topology of 21'. 

Prooi: If we have a sequence (x)", (X)F., ... of 
elements of X which is a Cauchy sequence in the 
weak topology of &', then for any E > 0 there 
exists an N (E) such that 

I(x), .. - (x}F.1 < E for m, n ;::: N(E). (5.3) 

Inserting any Xa,(fl) ... Xa.(fn) in (5.3) we get 
from (4.69) 

1F:':"';'''(il X '" X ik) - F:,,···;a. 
X (il X ... X ik)! < f, m, n ;::: N(E). (5.4) 

Consequently F 1, F 2, ••• is a Cauchy sequence in 
the weak topology of $; thus according to Axiom 
IIB there exists a limit F E s. Due to Theorem 2, 
Sec. 4, we have 

(X",,(fl) •.. XCI.(ik»' 

= lim (X",(fl) ... x".(i,,»,. (5.5) 
ft"'CO 

for any al(il), ... ak(fk) E D'b' The linearity of any 
functional belonging to X in combination with 
Theorem 3, Sec. 4, allows us to write 

(x), = lim (x),., (5.6) 
..... '" 

AB 214 is everywhere dense in & in the norm (Theorem 
3, Sec. 4) we can choose for any element x of & 
a sequence Xl, X2, ••• E &, converging in the norm 
to x, i.e., for E > 0: 

Therefore, with the help of (5.2) we get 

I(x), - (X),. I ::; I(x), - (Xk)'! 

+ I(Xk)' - (xk),.1 + I(Xk)'. - (X), I 

(5.7) 

::; 2 IIx - xkll + !(Xk)' - (Xk)'.!. (5.8) 

For given f > 0 we can choose, according to (5.7), 
such a ko that 

(5.9) 

Due to the fact that Xk. E 21, there exists, according 
to (5.6), such an N(ko, if) that 

I(Xk.)' - (Xk.)F.1 < ie, n ;::: N(kQ , ie), (5.10) 

Therefore, from (5.8) we get 

I(x), - (X),. I < E, (5.11) 

Consequently we have proved that X is closed in 
the weak topology of 2{'. 

The convexity of X is a consequence of Axiom 
IIA. Namely, due to Theorem 3, Sec. 4, we can 
write, by choosing 

x = x",(ft) ... xa.(f .. ), al(fl) , ... a .. (i,,) E D'b. (5.12) 

for any given Fl> F2 E Sand 0 ::; t ::; 1: 

t(x)" + (1 - t)(x),. = tF;';·",a"(il X ... X in) 

+ (1 - t)F;""';a°(fl X ... X in) 

= r':"':"'(il X ... X in) = (x),. (5.13) 

where F exists according to Axiom IIA. Due to 
the same theorem relation (5.13) is true for any 
x E & and therefore, the convexity of X is estab­
lished. Q.E.D. 

Applying Lemmas 1 and 2 as well as Krein-Mil­
man theorem21 we can state 

Theorem 1. The set X which is the image of S 
in &', is a closed subset of the set m. of all functionals 
belonging to 2{' with a norm22 smaller than one. 
Hence it is a convex, bicompact23 subset of &' in 
the weak topology of 21'. Consequently X contains 
extremal points and it is the smallest convex closed 
set (in the weak topology of 21') containing all the 
extremal points of X. 

In this context a functional f(x) E 2{' is called 
an extremal point of a subset S of &' if it belongs 
to S and if 

f(x) = tft(x) + (1 - t)fa(x) , x E 21, (5.14) 

for some 0 ::; t ::; 1 and fl1 fa E S implies that 
flex) =: Mx) =: f(x). 

Theorem Z. A functional (x), E X is an extremal 
point of X if and only if the physical state F it 
represents is a pure physical state. Each indecom­
posable on :Ie functional (x), E X is an extremal 
point of :Ie and, therefore, it corresponds to a pure 
physical state. 

21 Ref. 19, p. 62. 
22 If (x) E ~I then If(x)i ::; C IIxli, x E ~, for some 

positive numbers C. The norm IIfll, f E ~/, of f (x) is defined 
as the greatest lower bound of all such C. 

28 Ref. 19, p. 56, Proposition III. 
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The proof of this theorem is not reproduced. 
Namely, the first part of the theorem can be proved 
by the methods used in the proof of Lemma 2; the 
proof of Proposition 4, Sec. 3.2, in II can be also 
consulted. We should now mention that a functional 
f(x) belonging to a subset S of positive functionals 
from j!{' is called indecomposable on S if every 
(positive) functional Mx) E S dominated by f(x), 

h(x*x) :::;; const f(x*x) , (5.15) 

is a multiple of f(x), i.e., if (5.15) implies 

Mx) = Af(x) , x E &. (5.16) 

for some A ~ O. For the proof of the second part 
of Theorem 2, the proof of Proposition 5, Sec. 3.2, 
in II can be consulted. It has to be noticed that 
due to the fact that we have not postulated the 
equivalent of Axiom VI, 2 in I, Sec. 2.2, we cannot 
assert that each extremal point of X is a functional 
indecomposable on X. 

By following precisely the same reasoning as in II, 
Sec. 3.3, we can prove the following theorem: 

Theorem 3. For any given .c formalism there 
exists a Hilbert space Je which provides a Hilbert 
space representation (Def. 4, Sec. 3) of that .c 
formalism. 

The above theorem is proved by establishing that 
there is a complete isomorphism between the algebra 
& and a C* subalgebra &0 of the algebra 58(Je) of 
all bounded operators on Je, while the set Xo of all 
extremal functionals of X (corresponding to pure 
physical states) is injectively mapped into the set 
of all rays on Je. For details the proof of Theorem 3, 
in II, Sec. 3.3, which is completely analogous in 
form and content with the above theorem, should 
be consulted. 

MA) = A, (5.19) 

(i' F is any normalized vector determining the ray 
on the Hilbert space into which F is mapped.) 

Proof: Functions fA E 5'a satisfying condition 
(5.19) can be found in any of the Gel'fand-type 
spaces of functions on Rl introduced in Sec. 1. 
It follows directly from the definition of the spectrum 
sa of a (Def. 3, Sec. 2) that in case the support 
of a function f 5'a is contained outside sa the 
smeared observable aCt) is equal (in the sense of 
Def. 2, Sec. 3) to a zero smeared observable, i.e., 

FO,CH'Cf) = 0, FE S. (5.20) 

Consequently a(f) is mapped into the zero element 
of 58(Je). Thus, all smeared observables with test 
functions satisfying (5.19) are equal regardless of the 
behavior of these test functions out.side sa. There­
fore, Aa(f>-) is a uniquely determined operator. 

Due to the construction of the algebra & and 
to the * isomorphism between j!{ and the C* algebra 
j!{o, we get that (5.18) is true and that. 

(5.21) 

By choosing fA to be a real function, Le., f)' = A, 
we can deduce that Aa = A"CfA) is Hermitian. 
As A" is bounded it follows that it is self-adjoint. 

According to the construction 

IIAaW = IIXa(fA)W = [q,(~a(f,,»]2 

= sup FalaU" X fA)' (5.22) 
FE~ 

With the help of Axiom IC and Theorem 2, we get 
from (5.22) 

IIAaW = sup F"U>.fA). (5.23) 
FEll. 

We prove that IIA"'I = !lall by showing first that 
Theorem 4. To each one-dimensional observable 

a can be attached a bounded self-adjoined operator IIA"U:::;; Ilal/ (5.24) 

A a in Je which is such that and afterwards that 

IIAall = Iiall 
and for any fJ(g), -y(h) E Db 

F~:a:.,(y X f>. X h) 

= ('l'pl A/l(y)A"A.,(h) I'l'p) 

if j, .. E 5''' is so chosen thae4 

(5.17) 

(5.18) 

24 For the sake of simplicity it is assumed that Rii (see 
footnote 14) does not contain any point belonging to the 
interval - Ilall ~ A ~ + lIali. The theorem can be, however, 
formulated and proved also when that is not the case, only 
then the proof is technically somewhat more involved. 

(5.25) 

We can easily build an infinitely many times 
differentiable function e.(X) such that 

and 

e.(A) = {OJ 
1, 

IAI > Iiall + E, 

IAI ::;; Iiali. 
We can choose such an f).. that 

Ixl ::;; lIall + E. 

(5.26) 

(5.27) 

(5.28) 
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We obviously have that Ah.e. E ~a and 

IMl\)1 2 e,(l\) ~ (llall + I/e.(l\), l\ ERa. 

Consequently, due to Axiom ID we can write 

(5.29) 

Fa(JAfA) = Fa(AfAe.) ~ (liall + E)2r(e.). (5.30) 

As Fa is a probability functional we have 

r(e,) = 1. (5.31) 

Thus we get from (5.23) 

IIAaW ~ (liall + E)2. (5.32) 

The construction can be performed for arbitrarily 
small E; hence (5.24) follows. 

Assume now that Iiall is a point of the spectrum sa; 
in the case ofthe only other alternative, -/lall E sa, 
the argument will be completely analogous. For any 
E > 0 we can find two arbitrarily many-times dif­
ferentiable functions e1(l\), e2(>"), l\ ERa, having 
the following properties: 

o ~ e.(>..) ~ 1, hER a, i = 1, 2; 

{
o h < lIali - E, h> IIall + E, el(h) = ' 
1, lIa II - !E ~ h ~ lIa II , 

{
o h < E, >.. > lIall - !E, e2(h) = ' 

1, 0 ~ h ~ Iiall - E; 

el(h) + e2(h) = 1, 0 ~ h ~ +IIali. 

(5.33) 

(5.34) 

(5.35) 

hERa. (5.36) 

Consequently we can write for any F 

r(AfA) = r(JAfAel) + r(AfAe2) 

~ rCAfAel) ~ (liall - E)2r(el). (5.37) 

According to Axiom IIIB there always exists such 
an FI E S that F~(el) = l. Due to Theorem 2 
there should also exist such an FoE So that F~(el) = l. 
Therefore, from (5.23) we get 

(5.38) 

The whole procedure can be carried through with 
an arbitrarily small E and, therefore, (5.25) follows. 

Q.E.D. 

This theorem cannot be extended in general to 
8-dimensional observables (8 ~ 2) with bounded 
spectrum, because the space ~a can be, under 
realistic conditions, restricted in many respects so 
that we cannot construct a priori generalizations 
of test functions fulfilling some kind of generalization 
of the conditions (5.19). 

Theorem 4 cannot be extended to the general case 
of one-dimensional unbounded observables either if 
no additional assumptions are introduced. One such 
additional assumption would consist in requiring 
that the sequence 

(5.39) 

is bounded for any F E So and any identity-approx­
imating sequence ii, f2' ... E ~a. 

We see that in the most general case each ob­
servable a of the original formalism is not rep­
resented by a single self-adjoined operator but rather 
by an entire family of bounded operators Aa(f) 
associated with each smeared observable aCt) E 3b 
which corresponds to a. 
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Various t~eorems rela~ed especi.ally to ti~e-~rdered products are proven. Applications to quantum 
field theo~ Include ~artIcularly sImple denvatlOns of the off-mass-shell extensions of the S-operator 
and of the InterpolatIng field. The latter are a generalization of the results of Glaser Lehmann and 
Zimmermann. ' , 

1. ORDERING AND ORDERED PRODUCTS 

T HE idea of operator ordering in quantum field 
theory is not newl and has been used extensively 

since the work of Wick2 made it generally known. 
However, due to the almost exclusive use of perturba­
tion expansions, operator ordering has been carried 
out mainly with free fields. 3 While certain orderings, 
such as normal ordering, are only defined for such 
fields, other orderings are not. The theorems below 
will refer to orderings (especially time ordering) of 
arbitrary local operators. 

Given a product of n operators, the ordered product 
of these operators under a given ordering must be 
defined. We define an operator 0 by 

O(AlB2 ... Zn) = (A lB2 ... Zn)ordered, (1.1) 

with two important properties. First, it is idem­
potent, 

(1.2) 

which is an obvious property. Secondly, it has a 
symmetry property. For spin-zero fields the left side 
of (1.1) is symmetric in the permutation of the opera­
tors, for spin-half fields it is antisymmetric. More 
precisely, if each factor in the product transforms 
according to some irreducible representation of the 
Lorentz group D(im, in) then the left side of (1.1) 
changes sign under an interchange of two operators 
for each of which m + n is odd (Fermi operators). 
Otherwise the left side remains unaffected. 

If the n operators in the product are completely 
unrelated, the operator 0 is linear. But one is usually 
interested in operators for which commutation rela­
tions hold and possibly other equations. In that case 

'" Work supported in part by a grant from the National 
Science Foundation. 

t NASA Fellow. 
1 A. Houriet and A. Kind, Helv. Phys. Acta 22,319 (1949). 
2 G. C. Wick, Phys. Rev. 80, 268 (1950). 
a We shall use the word "operator" loosely here including 

operator valued distributions. 

linearity in general does not hold. As a particular 
consequence of this we note that an equation does 
not remain valid (in general) under the operator O. 

The operator for normal ordering will be denoted 
by N, the normal ordered product by : ... : in the 
notation of Wick. Its definition is well known.2 

Time ordering, however, requires some comments. 
The operators T + and T _ indicate positive and 

negative time-ordering, i.e., nondecreasing time from 
right to left and from left to right, respectively. 
If AI, A 2 , •• , , An are n different time-dependent 
operators, then 

T+(A I ••• A,,) = 8p Ai, ... Ai., 

ti • > tis > '" > ti" 

8~ Ai< ... Ai" 

(1.3) 

ti, < tis < ... < tl,' (1.4) 

8p and 8~ are the sign factors corresponding to the 
symmetry of the left sides (see above) under the 
permutations 

[
1 '" n] and 

i l '" i" 
[
1 ... j 
il ... i 

respectively. 
When two or more operators occur at equal times 

their order is unspecified and Seems to be essentially 
irrelevant, because it will be assumed throughout 
that two operators at equal times and different 
space points commute with each other unless they 
are both Fermi operators (in which case they anti­
commute). The sign arising in the latter case is 
included. in 8p and 8~. Not so, however, for equal­
space pomts. 

The correct expression of a time-ordered product'" 
is then obtained by use of the step function 6(x) = 

4 The following definition is necessary only for time-ordered 
prod~cts. of operators and is partly redundant for operator 
dlstnbutlOns. 

1697 
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1, t, 0 for XO > 0, XO = 0, XO < 0 and of the cor­
responding partition of unity, 

1 Ozl + Oiz = Ox! + 01.(0%2 + O2%) 

Ozl + 01%2 + Olz 02.(Oza + Oa.) 

where we used the notation 

(1.5) 

(1.6) 

This partition is used as follows. For two operators 
Al == A(tl) and B2 == B(t2) which \ve shall assume 
to be Bose operators for the sake of example, 

T+(A I B2) == 012A IB2 + 021B2A I , 

T _(A I B2) == 012B2A 1 + 821 A 1B2. 

(1.7) 

(1.8) 

Given a product such as AIB2 on the right of one of 
these equations, a third operator Cx is to be inserted 
in the place appropriate to the time ordering using 
(1.5). For tl ;::: t2 , for example, 

T:(A 1B 2CX ) 

= OzlCxA j B2 + Olz2A 1CxB2 + 81.82.AIB2CX. 

Thus, for arbitrary timcs 

T:(A 1B2Ca) = 012(031CaA IB2 

+ 0132AICaB2 + 01a02aAIB2C3) + (1 ~ 2). 

The last symbol indicates repetition of the previous 
term with 1 and 2 interchanged. But this expression 
is not yet symmetrical in 1, 2, and 3. Symmetrization 
yields 

(l.ga) 

= 1: 8123AIB2Ca, 
perm 

where 

We note that (1.9) is not the sum of all permuta­
tions of 0123AIB2Ca, but differs from it when the 
ti are equal. 

The partition of unity (1.5) permits one to insert 
an additional operator into a T + -product of n - 1 
operators, yielding after symmetrization a T + -prod­
uct of n operators. In this way time-ordered products 
of any number of operators can be constructed. 

The T-product of n continuous operator functions 
is a discontinuous operator function because of the 
step functions. But even in this case the derivative 
of the T-product is to be regarded as a distribution. 
This suggests that the T-product and 8(x) should be 

regarded as distributions to begin with. While this 
is possible, it does not invalidate the approach 
adopted here. After all, a distribution is a generaliza­
tion of the function concept. In particular, the def­
inition of 0(0) in connection with the specification 
of O(x) as a function does not prevent one to regard 
O(x) as a distribution. It only makes the value of 
0(0) irrelevant. Thus, we have for example 

(1.10) 

Consequently, as a distribution, the T-product can 
be defined as, e.g., 

(1.11) 
perm 

Indeed, (1.9) becomes (1.11) because of (1.10). 
We adopt our approach in terms of functions 

rather than distributions for the ordered products 
for two reasons. Firstly, many of the equations we 
derive below are of a purely algebraic nature and 
do not involve derivatives, and secondly, there is 
little point in regarding the O-function as a distribu­
tion if its product with the operator distributions 
Al ... Z .. remains undefined in a distribution­
theoretic sense. 

For the purpose of applications it will sometimes 
be necessary to consider the expansion of an operator 
in terms of time-ordered products of free fields. 
The latter are denoted by lower case letters and, 
unless otherwise noted, will always refer to the in­
fields; their time-ordered products are denoted by 
a subscript: 

(1.12) 

Thus, for a neutral scalar field a(x), an operator 
functional of it would be 

where dX i indicates integration over four-dimensional 
Minkowski space and t~*) (Xl· .. x 2 ) is a (generalized) 
function symmetric in its arguments. 

The expansion (1.13) can be used to define the 
quantity (a(x)F)± by 

(a(x)F)± == 1: ~ J f~±)(XI ••• x,,) 
.. -0 n. 

x (a(x)al ... an)± dXI ••• dx". (1.14) 

The quantities W) (Xl ... X,,) in (1.13) can be 
related to the operator derivatives5 of the operator 

6 F. Rohrlich, J. Math. Phys. 5, 324 (1964). 
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functional F as follows. We know that in the N-prod­
uct expansion 

co 1 J F = L I !,,(x i ' •• x,,) :al •• , a,,: dX1 .•. dx", 
,,-0 n. 

(1.15) 

f,,(XI ... x,,) = <lJ"F/(lJXI .,. lJx .. »o, (1.16) 

where we use the notation 

lJF/lJx == lJF/lJa(x). (1.17) 

The Wick theorem relating free T-products and 
N-products plus the symmetry of f .. (x i ••• x .. ) gives 

(1.18) 

with 

in the way in which interpolating and asymptotic 
free fields are related, 

A(x) = S*[a(x)S]+, (1.21) 

where S is unitary. This important theorem can be 
combined with the general expression for multiple 
operator derivatives in terms of T-products (Sec. 5), 
to yield a simple derivation of the off-mass shell 
behavior of any (multilocal) functional and in partic­
ular of the S-operator in quantum field theory. 

Throughout this paper we shall restrict ourselves 
to the neutral scalar field whenever the transforma­
tion properties of the operators become relevant. 
Generalizations to charged fields, to higher spins, and 
to the massless case will be reported in a future 
publication. 

2. REDUCTION OF T-PRODUCTS 

C~~.! = nt, (1. 19a) Let B2 '" Z" be a product of n - 1 Bose opera-

C~~!(Xm+l ... x .. ) n! (±i)l(,,-m) 
(n - m)! 

Substitution into (1.15) and rearrangement of the 
double sum yields 

f~"'\xI ... xm ) = f ( ~ l) , J dXm+1 .•. dXm+1 
1-0,2,'" m , 

X C~~~+I(Xm+l ... Xm+l)fm+I(X1 ••• Xm+I)' (1.20) 

In Sec. 2 we derive the fundamental reduction 
formula for T-products and apply it to the deriva­
tion of the analog to the Matthews-8alam equations7 

as they arise in asymptotic quantum field theory. 
The exact relation of these equations with those 
obtained by Matthews and Salam will be discussed 
elsewhere. 

In Sec. 3 the reduction formula for T-products is 
generalized to the factorization formula for T­
products. As a by-product, the relation between re­
tarded commutators and retarded products is ob­
tained and applied to the derivation of the Glaser­
Lehmann-Zimmermann result. 

In Sec. 4 a "pseudo-mapping" in terms of T­
products is derived for operators which are related 

6 For notation see J. M. Jauch and F. Rohrlich, The Theory 
of Photons and Electrons (Addison-Wesley Publishing Com­
pany, Inc., Reading, Massachusetts, 1959, second printing 
with corrections). 

7 P. T. Matthews and A. Salam, Proc. Roy. Soc. (London) 
A221, 128 (1954). 

tors, defined at points in time, t2 , ta ... respectively, 
which is T + ordered: 

T+(B2 •• , Z,,) = B2 ... Z" 

for t2 > ta > .. , > tn. (2.1) 

How is it related to a T + product of n factors? It is 
easy to see that 

T+(AIB2 ••• Zn) = 012A 1B 2 ••• Z .. 

+ ... + 0"IB2 ••• ZnAI' (2.2) 

It is further noted that, subject to (2.1), 

= 021 - 021 0al ~ 021 - Oal' t.>,_ 

and in general, 

0/,1.1+1 ~ 011 - 0/+1.1' (2.3) 
t'>"+1 

With (2.5) Eq. (2.2) becomes 

T+(AI ..• Zn) 

= [(012 + 021)A1B2 ••• Zn - 021 A IB2 '" Z .. J 

+ (021 - Oal}B2A 1Ca ..• Z .. 

+ (Oal - 041)B2CaA I D4 '" Zn + 
+ (On-l,1 - Onl)B2CS ••• Y .. - IA1Z .. 

+ 8 .. IB2 ••• Z.A1 , (2.4) 
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which upon rearranging terms results ins 

T +(A I ••• Z,,) = AIB2 •.. Z,. 

+ [Ba, AI]RCa ••• Z,. + Ba[Ca, AI]RD •••• Z" 

+ ... + Ba '" Y"-l[Z", At]R 
or 

T+(A I •.• Z,,) 

= Al .. , Z" + [Ba .•• Z,., AI]R' (2.5) 

We see now that (2.5) already contains the most 
general case, including the possibility of equal times, 
as can easily be checked. In particular, any of the 
explicit operators A 11 B2, ••• , Z" could be operator 
products at equal time. 

Furthermore since any T + product can be reduced 
to an expression of the form (2.1), the result (2.5) 
also proves the equation 

T +(A 1B 2 ••• Z,,) 

= AIT+(Ba •.. Z,,) + [T+(B2 ••• Z,,), AI]R' (2.6) 

Variations on (2.6) are summarized below: 

T ",(AI .•. Z,,) = AIT ,,(B2 ••• Z,,) 

± [T ",(Ba ••• Z,,), AtJR, (2.7) 
A 

T ",(AI •.. Z,,) = T ",(Ba ••• Z,,)AI 

± [AI, T ",(Ba ••• Z,,)]R. (2.8) 
A 

where 

Their proofs can easily be supplied by the reader' 
Eqs. (2.7) and (2.8) imply the interesting equalities 

[[Ba, T ",(Ca' •• Z..)]R, AI]R 
A A 

± [[Ba, A1]R, T "'(C3 ••• Z,.)]. (2.10) 
A 

They can be proven as follows: 

T+(A I •.. Z .. ) 

= AIT+(B2 .•• Z,,) + [T+(B2 ••• Z,,), AI]R 

= Al {T +(C3 ••• Z,,)B2 + [Ba, T +(Ca ... Z,,)]RJ 

+ [{T+(Ca .•. Z,,)Ba + [Ba, T+(Ca ... Z,,)]R}, AI]R 

= AIT +(C3 ••• Z,,)B2 + [Ba• AIT +(C3 ••• Z,,)h 

8 The retarded commutator [Alo B2]R "" /II! [AI, B2]. It is a. 
special case of the inhomogeneous commutator of Ref. 5. 

- [B2' AI]RT +(Ca ••• Z,,) 

+ [T +(C3 ••• Z,,), A I]RB2 + T +(C3 ••• Z .. )[B2 , At]a 

+ [[Ba, T +(C3 •• , Z,,»)R. AI]a. (2.11) 

We also have 

T +(AIBa •.• Z,.) 

= T +(AICa ••• Z,.)B2 + [B2 , T +(A1Ca ••• Z,,)]R 

= T+(A 1Ca ••• Z,,)B2 + [Ba, A1T+(Ca ••• Z,,»)R 

+ [Ba, [T+(Ca ••• Z,,), A1]R]R' (2.12) 

Now comparison of terms in (2.11) and (2.12) yields 
Eq. (2.10) with the upper subscripts, 

[Ba, [T +(C3 ••• Z,,), A1]R]R 

= [[Ba, T +(Ca ••• Z,,)]R, A1]R 

- [[Ba, A1]R, T+(Ca ••• Z,,)]. (2.13) 

The proof for the T _-product follows in the same 
manner. 

As a simple application of Eq. (2.7), consider the 
operator derivative of the T + -product of the in­
terpolating neutral scalar field. That field satisfies9

•
lo 

(2.14) 

where the operatorll m eliminates all terms with 
factors of the form K.5(x. - Xj). Therefore, 

(i5/ 5x)T +(A 1 ••• A,,) 
,. 

= L:T+[A1 .. • i(oA,.jox)· .. A,.) 
k-l 

= mK,,[T +(Al ..• A,,), A,,)R 

= mK",T +(A"A1 ••• A,,) - CJtJ"T +(A 1 ••• A,.). 
(2.15) 

We used (2.7) and K"A", = J". The relation12 

(2.15) is the analog of the Matthews-8alam equa­
tions7 in asymptotic Eq. field theory. 

3. THE FACTORIZATION OF T-PRODUCTS 

The generalization of (2.6) is 

T+(AI ... Z,,) = T+(A 1 ••• Fz)T+(Gz+1 ••• Z,.) 

(3.1) 

9 R. E. Pugh, J. Math. Phys. 6, 740 (1965). 
10 T. W. Chen, F. Rohrlich, and M. Wilner, J. Math. 

Phys. 7, 1365 (1966). 
11 R. E Pugh, J. Math. Phys. 7, 376 (1966). 
12 This relation was first obtained by T. W. Chen by a 

different method, Ph.D. thesis, Syracuse University (1966)' 
see also Syracuse University preprint GP-4935, SU 66-01. ' 



                                                                                                                                    

ORDERING THEOREMS 1701 

where18 

I 

[T+(G'+l .•. Z,,), T+(A 1 ••• F,)]n = L T+(A 1 ••• A •••• F,)(T+(GZ+1 ••• Z .. ), C.h _-1 
I 

+ L T+(A 1 ••• Ali ••• F z)([T+(G1+1 ••• Z,,), C.1R , DfJa 
i<I-1 

(3.2) 

The consistency of Eq. (3.2) with our previous definitions is demonstrated in Appendix A. The proof of 
(3.1) follows by induction. For l = 1, (3.2) becomes an identity and (3.1) reduces to (2.6) and is therefore 
satisfied. Assume it now for l and prove it for l + 1. 

T+(A 1 ... Z .. ) = A 1T+(B2 ... Z,,) + [T+(B2 ... Z,,), A1]n 

= AdT+(B2 ... Gz+1)T+(H1+2 ... Z,,) + [T+(H1+2 ... Z .. ), T+(BlI ••• G
'
+1)hd 

+ [{T+(Bll ... G1+l)T+(Hz+2 ... Z,,) + [T+(H z+2 ... Z .. ), T+(Bli ... G1+1)]R},-At]a. (3.3) 

T+(A 1 .,. Z .. ) = A1T+(B2 ••• G1+1)T+(Hz+2 ••• Z,,) + A 1[T+(H z+2 ••• Z .. ), T+(Bl/ •.• G1+l)]a 

+ [T+(B2 ••• G1+1), A 1]RT+(H 1+2 ••• Z,,) + T+(Ba .•• G1+1)[T+(H1+2 ••• Z,,), A 1]a 

+ [[T+CH1+2 ••• Z,,), T+(Bll ••. Gz+1)]a, A1]a 

= T+(A 1 ... G1+l)T+(H1+2 ... Z,,) + [T+CH 1+2 ... Z,.), T+(A 1 ... G/+1)]R' 

The last relation is a consequence of the following 

[[T+(H1+2 ••• Z,,), T+(B2 ... G1+1)]a, A1]a 
1+1 

= L (T+(B2 ... A •••. GZ+l)[T+(H1+2 ... Z .. ), C.]a, A1]a 
i-2 

1+1 
+ L [T+(B2 ••• Aij ••. G1+1)[(T+(H1+2 ••• Z .. ), CdR, Df)R, A 1]a 

,<1-2 

1+1 

= L {[T+(B2 ••• A •.. , G1+1), A 1]a[T+(H1+2 ••• Z,,), C.Ja 
,-2 

1+1 

= .E {[T+(AIB2 ... A •..• G1+l) - AIT+(B2 •.• A •••• G1+1)][T+(H1+2 ••• Z .. ), Cola 
.-2 

+ T+(B2 ••• A •••• G1+l)([T+(H1+2 ... Z .. ), Ci]R, A 1]R} + ... .. .. 
= [T+(HI+2 ... Z .. ), T+(AI •.. GI+1)]a - T+(B2 ... GI +l)[T+(H1+2 ... Z .. ), A1]R 

(3.4) 

(3.5) 

- A 1[T+(H1+2 ••• Z,,), T+(Bl/ .•• G1+1)]a. (3.6) 

When combined with (3.4) this yields (3.5). This completes the proof of (3.1). 
In the same manner factorization can be carried out for the T _-product, 

T_(AI ... Z,,) = T_(AI ... Fz)T_(G'+l ... Z,,) - [T-CG1+1 ... Z,,), T_(AI ... F I)].\! (3.7) 
----

13 The letter Aijk indicates missing operators at the positions ijk •.•• 
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where 
I 

[T-(G 1+ 1 ••• ZlI), T_(AI ... FI)]A = + .L: T_(AI ... A •... F,)[T_(G'+l .•. Z,,), G']A 
i-I 

I 

+ (-) .L: T_(AI ... Ai; ... FI)[[T_(GI+l '" Z .. ), G']A, D;]A 
i<1-1 

+ (_)1-1[ ... [T_(G'+l •.. Z .. ), Al]A, B2]A, ... FI]A' 

Alternatives to (3.2) and (3.8) are given by the following: 

" [T,.(G/+ I '" Z,,), T,.(A 1 ••• FI)]R = + L [G;, T,.(A 1 ••• FI)]RT,.(Gl+l '" A. '" Z .. ) 
A i-Z+l A 

.. 

(3.8) 

+ (±) .L: [G., [D;, T ,.(A l ••• FI)]R]RT ,.(GI+l ... A.; ... Z,,) 
1<1-1+1 A A 

An equivalent set of equations to (3.2), (3.8), and (3.9) is related by the symmetries 

[T,.(GI + I ••• Z,,), T,.(A I ••• FI)]R = [T,.(A I ••• F ,), T,.(Gl+l ... Z .. )JA 
A R 

and 

(3.10) 

is symmetric under permutation of the operators A I, B 2 , ••• Fl. (3.11) 

These equations are 
I 

[T,.(A 1 .,. F,), T,.(Gl+1 .. , Z,,)JA = + L T,.(A I .. , A. '" F,)[G;, T,.(Gl+1 ... Z .. )]A 
R i-I R 

I 

+ (±) .L: T,.(A I ••• Ali ... F,)[G, , [D;, T,.(G'+l ... Z,,)hJA 
i<;-1 R R 

(3.12) 

and 
n 

[T,.(A u ... F ,), T±(GI +1 •• , Z,,)]A = + L [T,.(A 1 •• , F I), C;hT,.(GI +1 ••• Ai '" Z,,) 
R i-l+l R 

" + (±) L [[T,.(A I ••• F ,), C']A' Dj]AT,.(GI + I '" A.; .•. Z,,) 
i<;--Z+l R R 

As a check of this result consider the neutral scalar field A(x) and its asymptotic free field a(x), sym­
bolically A(x) ~ a(x) for t ~ - CD. A well known consequence of micro causality is that the inter­
polating field can be written as14 

14 V. Glaser, H. Lehmann, and N. Zimmermann, Nuovo Cimento 6, 1122 (1957). 
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'" 1 J A(x) = a(x) + L:, K l ··· K,,{R(x; Xl •. , x .. »O 
.. -2 n. 

:al ... a .. : dXl ... dx... (3.14) 

Consequently, the off-mass-shell extension of A (x) 
is given by 

<~"A(X)/(~Xl ... ox .. »o 

= mKl ••• K .. {R(x; Xl ••• x,,»o. (3.15) 

The corresponding operator equation 

0" A (x)/(oxl .,. ox .. ) 

= mKl ••• K"R(x, Xl ••• X,,), (3.16) 

which provides the off-mass-shell extension of the 
results of Ref. 14 also holds. This relation was first 
obtained by T. W. Chen12 who did not use the m 
operator in the operator derivative. While this opera­
tor is not necessary, it simplifies the argument con­
siderably as can be seen by the following very short 
proof of (3.16). 

First we define 

-t'R'(x; Xl ••• X .. ) 

== [ ... [Ax, Al]R, A2]R, .,. A .. ]R' 

Then it follows by induction that 

(3.17) 

0" A%/( ox. '" ox,,) 

= mKl '" K..R'(xj X • ... x,,). (3.18) 

For n = 1 this is the Itdynamical axiom" of Pugh9 

which was derived from the fundamental axioms 
in a recent paper.lO Assume it now for n. Then 

0"+ 1 Ax/ (ox. '" ox .. +l) 

= (%x,,+l)mKl ... K"R'ex; X • ... x .. ) 

= mKi ... K,,(O/OX,,+l)R'(xixl ... X .. ) 

= mK. '" K .. K .. +.(-mR'(xj X • ... x .. ), A,,+l]R' 

(3.19) 

The last step follows by noting that R'(Xj Xl .,. X,,) 
is a linear combination of polynomials in the A-field, 
that Euler's theorem applies, and that ioAt/oX2 
mK2 [A., A 2]R' But by definition 

= R'(Xj Xl .,. X"X,,+.) , (3.20) 

proving the contention (3.18). In Appendix B it 
is further demonstrated that R' = R, concluding the 
proof of (3.16). 

Thus, using (3.16), (3.20), and (3.2) for a real 
scalar field, we obtain the interesting form: 

" i 2 ~2A + L: K~K • ... A·· ... K T (A .. , A·· .. , A) __ x 
'<j-l .,,, +. " " ~x. lixj 

Using (2.8) the left of (3.21) becomes, 

mK%Kl .. , K,,[Az, T +(Al ... A .. )]R 

= mKzKl '" K .. {T+(AzAl •.. A,,) 

- T+(AI ... A .. )Az }. (3.22) 

The off-mass-shell extension of S is given by (see 
Sec. 5) 

~"'li"S/(OXl ... ox,,) 

= SmK1 ... K"T+(AI .,. A,,). (3.23) 

Consequently, with (3.22) and (3.23), (3.21) can be 
written as 

(3.21) 

_~"'_+_1_0_"+_1_S_ = mK ~ ... li"(SA z ) 

ox oXl ••• ox.. Z oXl ..• OX" 

~ ... o"(SJ) = m z 
lix1 ••• lix" 

i" li" (i liS) =m -
liXl ••• lix" lix 

~"'+l O,,+lS 

lix liXl ••• lix" ' (3.24) 

thus demonstrating the consistency of the T fac­
torization with the functional derivative notation. 
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4. T+(Al'" A,.) = S*(al ••• a,.S)+ 

Let a, be a free Hermitian scalar field at the space­
time point Xi' Then the corresponding interpolating 
field Ai ~ a j for t, -7 - <X> is given by15 

(4.1) 

A i is also Hermitian: 

At = (a,S*)_S = {S*a, - [a" S*].}S 

= S*{(a,S)+ - [a" s].l - [ai' S*].S 

= S*(a,S)+ - [ai' S*S].. (4.2) 

The last term vanishes because of unitarity, so that 

A1 = A,. 

To prove the contention of this section we proceed 
by induction. For n = 1 we regain (4.1). Let us 
therefore assume it for n and prove it for n + 1. 
Starting with (2.10), 

T +(AI ••• A,,+l) = A"+1T +(AI ••• A,,) 

+ [An+l , T +(AI ••• A,,)].. (4.3) 

By Eq. (4.2) and assumption, 

A"+lT .. (AI •.. An) 

= (a,.+1S*)_(al •• , a,.S)+ 

= {S*a .. +1 - [an+l, S*].j(al ... a"S)+ 

= S* {(al ••• a,.+1S)+ - [an+l' (al ..• a .. S)+] .. ) 

- [a,.+1, S*].(al ••• anS)+ 

= S*(al .•. a..+lS)+ - [a..+11 S*(al ••. a"S)+]a. 
(4.4) 

However, by assumption 

(a..+], S*(al ••• a..S)+]. 

= [a..+1' T+(A I ••• An)]. 

= - f dt ilA(x"+l - t) 

" X :E T+(AI ... i 8A;/8t .•• An) 
i-I 

11 The subscripts (±) have been defined in Sec. 1. The 
subscripts a, r are similarly defined as advanced and retarded 
commutaoors with respect 00 the implicit free fields. E.g., 

" X L: T+(A 1 ... [A;, Ar]R ... A,,}, (4.5) 
;-1 

where Bogoliubov causality16 has been used in ob­
taining (4.5). Integration by parts reduces (4.5) to 

[a"+1' S*(al ••• a"S)+]a 

= [T+(A 1 ••• An), A,,+l]R 

= [A"+l' T+(A 1 ... A,,)h, (4.6) 

such that with (4.3) and (4.4) we have the desired 
result 

T+(A 1 ••• A,,+l) = S*(a1 ••• an+IS)+' (4.7) 

Some time after conclusion of the work reported 
here we discovered a paper by Medvedev17 who, by a 
different argument, has also arrived at the con­
clusion, (4.7); he has also correlated his result with 
the off-mass-shell extension of the SOl) as we do in 
Sec. 5. 

5. MULTIPLE OPERATOR DERIVATIVES AS 
T-PRODUCTS 

We return to the result (2.8) and derive from it 
the strong operator equation 

'/,'" 8"F I( 8al ... 8a,,) 

= frLKl ... K,,(al '" anF)+. (5.1) 

The proof proceeds by induction. For n = 1 we have 

frLK 1(a 1F)+ = frLK1(Fa l + [ai, F]r) 

= frLKI[al, F], = i :F. (5.2) 
ual 

Assume now that (5.1) is valid for n, then 

frLKl .,. K"+1(a1 ••• a"+1F)+ 

= 'JLK1 ••• K .. ·K"+1(al ..• afHIF)+. 

The last factor becomes 

K"+1(al ••• a..+lF)+ 

(5.3) 

= Kn+1 {(al ... a .. F)+an+l + [an + I , (al ... a.F)+],} 

= (i oI8an+1)(al .•. anF)+. 

When substituted into (5.3) this gives 

16 See Ref. 10; it is shown there that Pugh's "dynamical 
axiom" (Ref. 9) 

i oAt [ 
-.- = K2 At. A2 ]R 

UX2 

is a consequence of Bogoliubov causality. 
17 B. V. Medvedev, Zh. Eksperim. i Teor. Fiz. 48, 1479 

(1965) [English trans!': Soviet Phys.-JETP 21, 989 (1965)]. 
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:nKI .•. K"+l(a l ••• a .. +IF)+ 

= m-K1 ••• K,,(ioIOa"+1)(a l ••• a"F)+ 

= i(oloa"+1)·~"'[o"FI(oal ... oa,,)] , 

and establishes (5.1) for n + 1. This completes the 
induction proof of (5.1). 

As an application of the result (5.1), we derive 
the off-mass-shell form of the S-operator. Let F = S, 
then 

~ ... S*[o" SI( oal ... oa,.)] 

= NKI ... K .. S*(al '" anS)+ 

= NKI ... K"T+(AI •• , A,,). (5.4) 

In the last step we made use of (4.7). Now, the 
I{J -product differs from the T-product only in terms 
containing one or more factors of ~c(Xi - x;). 
Because of the factors KiK; in (5.4), these become 
-K;o(x. - x;) and are to be omitted due to the 
appearance of the operator :n. Thus, 

:nKI •• , K"T +(A I ••• A,,) 

= 'JlKI ... K"I{J(A 1 ••• An) (5.5) 

and (5.4) can also be written as 

t""S*[o"SI(oal ... oa,,)] 

= m-K1 ••• K"I{J(A 1 ••• A .. ). (5.6) 

That the operator 'Jl can be omitted in (5.6) [but 
not in (5.4)J will not be shown here.1s 

Another application of (5.1) refers to the expan­
sion of an operator in terms of normal ordered 
products, 

'" ( 0" J F = L: -: ! .. (xi ••• x,,) 
• -0 n. 

X :al ... an: dXI' .. dx". (5.7) 

The definition of the derivative specifies 

!,,(XI •.• x .. ) =: (m-t"'[o"FI(oal ••• oa .. )])o. (5.8) 

Therefore, 

! .. (XI .. , x .. ) = (m-KI ••• K,,(al ••• a"F) +)0' (5.9) 

The off-mass-shell behavior of the ! .. (XI ••• x .. ) is 
therefore determined by this expression for any F 
of the form (5.7). The vacuum expectation value of 
(5.6) is a special case of this result. 
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18 An indirect proof is contained in Ref. 9 where (5.6) is 
derived without the benefit of the m- operator. 

Note Added in Proof: As mentioned following 
(3.16), the use of the operator m- can be avoided. 
To this end one can admit the free-field equation 
K"a(x) = 0 only as a weak equation, i.e., it cannot 
remain valid under operator differentiation. The 
operator derivative can then be defined to commute 
with differentiation and integration. The interpola­
ting field, defined in (1.21), will still satisfy the usual 
integral equation, but K"A(x) = J(x) will now be 
valid only weakly [this is not the choice of A(x) 
adopted in Ref. 12J. 

With these definitions all equations of Sees. 1 
through 4 and the Appendices remain valid as strong 
equations without the operator 'Jl, except (3.23) 
and (3.24). These equations as well as Sec. 5 from 
which they arise are modified. However, the impor­
tant result (5.6) remains valid without m- as a weak 
equation. 

APPENDIX A 

The compatibility of Eqs. (3.2) and (2 .. 5) is easily 
shown. The two statements are 

[Fz, T+(A I ••• Zn)]R 
.. 

= L T +(A I '" Ai ... Z .. )[Fz , Gi]R 

.. 
+ L: T+(A I ••• Ai; .•• Z .. )[[F", G']R, D;]R 

i<i-l 

(AI) 
and 

[F"" T +(A I ... Z .. )]R 
.. 

== L: T+(A I ••• fEz, Gi]R ... Z,,). (A2) 

From Appendix B we have that 

[ ... [F", AI]R, ... , D"]R = i"R(Fz; Al ... D ... ) 

L: 6", ..... ['" [F." AI], B 2], ••• D .. J. (A3) 
perm 

(1 ..... ) 

Further, for convenience, we assume the time order­
ing 

T +(A I ••• Z .. ) = Al ... -Z .. , i.e., 

t1 >t2 > 
Then using (A3), (AI) becomes 

.. 

> tn. (A4) 

[F." Al '" Z,,]R = L Al ... Ai '" Z .. [Fz, Gi]R 
i-I 

" + L: Al ... Aii ... Zn[[Fz, Gi]R, D;] 
i<J'-t 
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and (A.2) becomes 

[F~, Al ... Z"JR 
" 

= L Al .,. [F". G.Ja ... Z,. 
i-I 

can also be expressed in terms of the R commutator, 
R', defined by 

£"R'(Az; B IG2 ••• Z,.) 

(B2) 

= [F", Al ... Y"-IJaZ" + Al .,. Y .. -I[F" , Z"Ja. In fact, we have 

(A7) R = R' (B3) 

We shall now prove that this expression is the 
same as (A5) by using induction. Eqs. (A7) and (A5) 
are clearly identical for n = 1. Assume now that 
they are both valid for n - 1. Then 

[F~, AI ... Z .. JR = AI '" Y .. -I[Fx , Z .. h 

+ {~ AI ... A •.•. Y .. -I[Fx , G']R 
i-I 

,.-1 

+ L: AI ... A;j ... Y .. -I([Fn Gi]n, D j] 
'</-1 

or 

i"+IR(Ax; Bl ... Z,.+1) 

= ~"'[R(Az; Bl ... Y .. ), Z .. +I]a, 

which implies (B3) by iteration. 

(B4) 

To prove (B4) assume the particular time ordering 
(we set t" == to for convenience) 

such that 

~"'R(Ao;BI ... Y .. ) = [ ... [Ao,BI], G2], ••• V,,]. 

(B6) 

(AS) Then 

The first two terms on the right of (A8) give 
.. 
L: Al .,. Ai .,. Z,,[F., CJR 
i-I 

.. -I 

+ L: Al ... A •... Y,.-t[[Fz , G.JR' Z .. J. 
i-I 

The first term agrees exactly with the first term in 
(A5) while the second term together with the third 
term of (AS) give 

.. 
L Al ... Ai; ... Z .. [[Fx, G.]R, D;] 

,<j-l 

,.-1 

+ L Al ... Aij ... Y .. -1[[[Fx, C.]R, D;], Z .. ]. 
i<;-1 

Again, the first term agrees with the second term 
of (A5) while the second term combined with the 
next (fourth) term of (A8) yields again two terms, 
etc. In this way the expression (A8) is completely 
rewritten in the form (A5). 

This completes the induction proof that (Al) and 
(A2) are equivalent. 

APPENDIX B 

The R product, defined by 

i"R(Ax; B 1G2 ••• Z,.) 

i"[R(Ao; BI '" Y .. ), Z,.+1]a 

= [ ... [Ao, B I ], G2 ], ••• Y .. ], Z .. +I]R 

= t [ ... [AD, B I ], •• ADj , Z"+IJa], ... , Y .. ], 
i-O 

(B7) 

~"'(R(Ao;Bl '" Y,.),Z .. +I]R 

= Oon+l['" [AD, Z"+1]' Btk··· Y .. ] 
.. 

+ L: 8;n+l!['" [A o,B1],··· ,D;],Z"+1],'" Y .. ] 
i-I 

.. 
= 1: (8;-1.,.+1 - 8; .. +1) 

i-I 

x [ ... [AD, Bd, .. , D;_I],' Z~+'d, E;], '" y .. ] 

+ 0 .... +1(", [AD, B 1], G2 ], •• , Y .. ], Z .. +l] 
,. 

= 1: 81- 1 ... +1 .;[,,' (AD, B I ], 
i-I 

x .. , D;_I], Z .. +I], E;], ... Y .. ] 

+ 0 .. ,.+1('" [AD, B I], ••• , Y,.], Z,.+l], CB8) 

using 

8;-1 ... +1 - 8;"+1 ---t 8;-1,,.+1,; for tl - 1 > t;. (B9) 

But, Eq. (B8) is just ~"'+lR(Ao; BI '" Y,.Z,.+l) 
subject to the condition (B5). Thus, since a proof 

== L 0>1 ..... (··· (Az, B I ], G2], •• , , Z,.], 
perm 
1-· .,. 

(B1) for one particular time ordering is a proof for 
arbitrary time ordering, Eq. (B.3) is proved. 
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Algebraic Aspects of Trilinear Commutation Relations 

H. SCHARFSTEIN 

5500 Fieldston Road, Bronx, New York 10471 
(Received 11 October 1965) 

An attempt is made to derive from the formalism of Schwinger's action principle, in a more convinc­
ing manner than previously described, a set of trilinear equal-time commutation relations which con­
tains the commutation relations first discussed by H. S. Green as special cases. Matrix representations 
of field operators satisfying the trilinear commutation relations are considered. Two representations 
are explicitly discussed: a four-dimensional and an eight-dimensional representation. The representa­
tions considered and the bilinear equal-time commutation relations between the associated "compo­
nent fields" obeying ordinary statistics are specified by irreducible representations of an algebra which 
is suggested by the trilinear commutation relations. The component fields associated with the same 
representation and of the same spin differ from each other in their bilinear equal-time commutation 
relations with other fields. This difference is reflected in the interactions into which the various fields 
can enter. 

INTRODUCTION 

I N the process of deriving commutation relations 
from the formalism of Schwinger's action princi­

ple,l it is customary to subject the field variations to 
a variety of restrictions. The commutation relations 
between kinematically related and unrelated field 
variables are then obtained from the generator equa­
tions and the restrictions imposed on the variations. 
Different assumptions about the operator properties 
of the field variations naturally lead to different 
commutation relations. 1

-
6 It is known, for example, 

that the trilinear commutation relations first con­
sidered by Green7 are special cases of a set of trilinear 
commutation relations which can be obtained from 
the action principle if particularly simple restrictions 
are imposed on the variations.6 The procedure of 
selecting for consideration classes of variations hav­
ing certain operator properties of course also has im­
plications bearing on the interactions which can be 
considered in the Lagrangian context. It is therefore 
of interest to inquire to what extent it is necessary 
to impose restrictions on the variations other than 
those implied by the definition of the generators of 
the infinitesimal transformations, and by the equa­
tions these generators satisfy. These equations [Eqs. 

1 J. Schwinger, Phys. Rev. 82, 914 (1951); ibid. 91, 713 
(1953); Proc. Nati. Acad. Sci. U.S. 44, 223, 617 (1958); 1959 
Brandeis University Summer Institute in Theoretical Physics 
Lecture Notes (notes transcribed by A. M. Kaufman), p. 81. 

2 T. W. B. Kibble and J. C. Polkinghorne, Proc. Roy. Soc. 
(London) A243, 252 (1957). 

3 D. V. Volkov, Zh. Eksperim. i Teor. Fiz. 36, 1560 (1959) 
[English trans!.: Soviet Phys.-JETP 9, 1107 (1959)]. 

• R. Arnowitt and S. Deser, J. Math. Phys. 3, 637 (1962). 
& H. Scharfstein, Thesis, New York University (1962) 

(unpublished), and Clarification to the Thesis (1962) (un­
published). 

S H. Scharfstein, Nuovo Cimento 30, 740 (1963). 
7 H. S. Green, Phys. Rev. 90, 270 (1953). 

(3) and (4)] amount to trilinear commutation rela­
tions between kinematically related and unrelated 
fields. The commutation relations (9) and (16) are 
derived with the definite assumption that a field 
variation and the corresponding field have identical 
equal-time commutation behavior with respect to 
all fields, except that the contraction of a variation 
with any field operator vanishes identically. 

The algebra defined by Eqs. (20) and (21) may 
be of interest even outside the context in which it is 
discussed, i.e., outside the context of trilinear equal­
time commutation relations. 

THE GENERATOR EQUATIONS AND 
COMMUTATION RELATIONS 

In the framework of Schwinger's action principle, 
it is natural that two different types of fields have 
to be considered. These are fields whose infinitesimal 
transformations are generated by antisymmetrized 
generators, and fields whose infinitesimal transforma­
tions are generated by symmetrized generators. The 
former will be denoted by 1/; and will be referred to 
as fields of type one, while the latter will be denoted 
by cp and will be referred to as fields of type two. 

The generators of the infinitesimal transforma­
tions, which, in the context of Schwinger's action 
principle, generate the infinitesimal transformations 
of the two types of fields and the infinitesimal trans­
formations of the respective adjoints or canonical 
conjugates 1// and 11', are respectively defined by 

G~1/;) = i J [lI/(x), 1'4 o1/;(X)]_ dx, (la) 

G(1//) = i f [o1//(x), 'Y,1/;(x)]- dx, (lb) 

1707 
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and 

G(I/» = J [1I'(x), ~(x)]+ dx, 

G('/f) = J [ll1r(x) , I/>(x)]+ dx. 

H. SCHARFSTEIN 

(2a) 

(2b) 

[E>(x), G(~)]_ = [E>(x), G(~)]_ = 0, (3d) 

where in (3d) the operator <9(x) refers to a field 
variable of either type one or two, which is kine­
matically unrelated to the type one field ~. 

The relations satisfied by the symmetrized gen­
erators are 

The factor 1'4 in Eqs. (la) and (1b) appears to bias 
antisymmetrized generators in favor of spinors. Actu­
ally, this factor has been introduced into the defini­
tion of the antisymmetrized generators only for 
convenience. and 

[I/>(x), G(I/»]_ = i ~(x), 

[1I'(x), 0(11')]_ = - i 811'(x) , 

[I/>(x), G(1I')]_ = [1I'(x), 0(1/»]_ = 0, 

(4a) 

(4b) 

(4c) 

The generators defined in Eqs. (1) satisfy the 
following relations: [E>(x), G(I/»]_ = [<9 (x) , 0(11')]_ = 0, (4d) 

and 

[~-(x), G(~)]_ = i N(x), 

[~(x), G(~)]_ = -i 8~(x), 

[~(x), G(~)]_ = [~(x), G(~)]_ = 0, 

(3a) 

(3b) 

(3 c) 

where in (4d) the operator <9(x) refers to a field 
variable of either type one or two, which is kine­
matically unrelated to the type-two field 1/>. 

With repeated application of suitable trilinear 
algebraic identities, the following expressions are 
obtained from Eqs. (1)-(4): 

i J [8~"(X)('Y4),,a, ({ ~a(X), [x~(x'), x;(x")]-}- - 8(x - x')('}'~)a~X;(x") + 8(x - x")('Y~)a'rX~(X'»)]- dx 

- i J [~a(X)('}'4)"a, 18~..(x), [x~(x'), x;(x")]-}-l- dx = 0, (5a) 

i J [6~"(X)(Y4),,a, ({ ~a(x), [x~(x'), x;(x")]-I- - 8(x - x')('Y~)a~X;(X") + 6(x - x")('}'~)a'rX~(X'»)]- dx 

- i J [~a(X)('}'4)"a, {6~..(x), [x~(x'), x;(x")]-I-l- dx = 0, (5b) 

J [~,,(x), ({1I',,(x), [x, (x') , x~(x")]+I- - i ~'" a(x - x')x~(x") - i ~"p a(x - x")x,(x'»]+ dx 

+ J [1I',,(x), {~,.(x), [x. (x') , x~(x")]+}-l+ dx = 0, (6a) 

and 

J [w,,(x), ({I/>,,(x), [x.(x') , x~(x")]+l- - i 5", a(x - x')x~(x") - i 5"p a(x - x")x.(x'»]+ dx 

+ J [I/>,,(x), {a1l',,(x), [x. (x') , x~(x")]+}-l+ dx = 0. (6b) 

The modified gamma-four matrix, 'Y~, entering Eqs. (5) and the ordered Kronecker delta, ~,'" occurring in 
Eqs. (6), are respectively defined as follows: 

and 

5,., = - ~." == -0", 

o 

if Ol and ~ refer to canonically conjugate (type-one) 
field components, 

otherwise 

if IJ. refers to a field component and II to the canonically 
conjugate component, 

if II refers to a field component and IJ. to the canonically 
conjugate component, 

otherwise. 

(7) 

(8) 
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In the derivation of Eqs. (5) and (6), no restric­
tions have been imposed on the variations other 
than those implied by Eqs. (1)-(4). Were it not for 
the second integral on the left-hand side of each one 
of Eqs. (5) and (6), commutation relations could 
be obtained from these equations, because in the 
first integral in each case the variations stand to the 
right or left, symmetrically disposed, with the right 
and left coefficients differing at most by a phase 
factor. It seems reasonable to require that the com­
mutation behavior of a field variation be parallel 
to that of the corresponding field, except that the 
contraction of a variation with any field operator 
vanishes identically. This requirement is consistent 
with and indicated by Eqs. (1)-(4). Moreover, this 
requirement also ensures that two field operators, 
which are obtained from each other by infinitesimal 
transformations of the type considered in Sch­
winger's action principle, have the same commuta­
tion properttes. The commutation relations, which 
can be obtained from Eq. (5a) when the second 
integral on the left-hand side of the equation is 
ignored and when identical right and left coefficients 
of the variations in the first integral are equated to 
zero simultaneously, imply that the second integral 
on the left-hand side of Eq. (5b) vanishes. The 
commutation relations which can then be obtained 
from the first integral on the left-hand side of Eq. 
(5b) in tum guarantee the vanishing of the second 
integral on the left-hand side of Eq. (5a). Com­
mutation relations can be obtained from Eqs. (6) 
in a similar manner. Since the variations involved in 
the process, 01/1, 0;P, &p, and 011', can presumably be 
performed independently, the above procedure of 
deriving commutation relations from Eqs. (3) and 
(4) appears to be self-consistent. The trilinear equal­
time commutation relations thus obtained are 

[1/I,,(x), [xp(x'), x;(x")]_]_ 

= o(x - x')(/'~) ",px;(x") 

- oex - x")(,,~)"''Yxp(x'), 

(<t>.(x), IX.(x'), X~(X")]+]-

= i ;SA. Il(x - X/)X~(X") 

(ga) 

+ i ;S"p o(x - X")x.(X/). (9b) 

While the symmetrization of the generators of 
the infinitesimal tranformations of the fields 1/1 and 
<p is used in the derivation of the above commutation 
relations and is reflected in the trilinear algebraic 
identities employed in the derivation, the sym­
metrization of the generators associated with the 

fields X and x' does not play an explicit role. The 
fields x and x' can therefore, independently of each 
other and independently of the fields 1/1 and <p, be 
either of type one or of type two. Moreover, any 
two operators occurring in the same trilinear com­
mutation relation may be kinematically related or 
unrelated. Furthermore, any field quantity appearing 
in Eqs. (9) can denote, independently of the other 
operators, either a field operator or its canonical 
conjugate. 

The commutation relations derived from the gen­
erator equations should in tum imply these equa­
tions. Since Eqs. (3) and (4) are of third order 
in field quantities, commutation relations of order 
higher than third, involving different fields, need 
hardly be considered. 

MATRIX. REPRESENTATIONS 

If Eq. (9a) is assumed to be valid only when all 
the operators occurring in it are kinematically 
related, then the type-one fields satisfying the re­
sulting commutation relation are known to be rep­
resentable as linear superpositions of arbitrary num­
bers of fermion fields, the various fermions com­
muting with each other at equal times.5

-
13 Simi­

larly, if Eq. (9b) is assumed to be valid only when 
all the operators occurring in it are kinematically 
related, then the type-two fields satisfying the re­
sulting commutation relation are known to be rep­
resentable as linear superpositions of arbitrary num­
bers of anticommuting boson fields. 5

-
13 In view of 

these representations, it appears to be natural to 
try to represent the generalized fields, i.e., those 
field operators which satisfy the commutation rela­
tions (9) or, more correctly, the commutation rela­
tions (16) (d. below), with no restriction of their 
validity to the kinematically related case, in terms 
of fermion and boson fields. The following representa­
tions of type-one and type-two fields will therefore 
be considered: 

",' 

1/I(x) = 2-t 2: A i 1/l.(x), (lOa) 
';-1 

8 K. Johnson, Math. Rev. 21, 7745 (1960). 
9 G. F. Dell'Antonio, O. W. Greenberg, and E. C. G. 

Sudarshan, University of Rochester preprint NYO-10241 
(1962), and Group Theoretical Concepts and Methods in Ele­
mentary Particle Physics, F. Giirsey, Ed. (Gordon and Breach 
Science Publishers, Inc., New York, 1964), p. 403. 

10 L. O'Raifeartaigh and C. Ryan, Proc. Roy. Irish Acad. 
62, 93 (1963). 

11 C. Ryan and E. C. G. Sudarshan, Nucl. Phys. 47, 207 
(1963), 

12 T. F. Jordan, N. Mukunda, and S. V. Pepper, J. Math. 
Phys. 4, 1089 (1963). 

18 D. G. Boulware and S. Deser, Nuovo Cimento 30, 230 
(1963). 
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if(x) = 2-! t A:if.(x), (lOb) 
i-I 

n 

4>(X) = 2-1 E B,-tP,(x) , (10 c) ,,-1 

(lOd) 

The field operators on the right-hand side of Eqs. 
(lOa) and (lOb), respectively, are fermion field opera­
tors and their Pauli adjoints, the field operators 
on the right-hand side of Eqs. (lOc) and (1Od), 
respectively, are boson field operators and their 
adjoints, and the A's and B's are numerical matrices. 
The relationship between a matrix A. and its 'con­
jugate' A:, as well as the relationship between B. 
and B:, are not specified at present, except that these 
matrices must be related in such a manner that Eqs. 
(12) are satisfied. The integers m and n in Eqs. (10) 
remain to be determined. 

While the associative law of multiplication is valid 
not only for numerical matrices but also for matrices 
whose nonvanishing elements are field operators 
obeying commutation relations, some properties of 
matrices valid in the former case are not in general 
valid in the latter. In order to bring the methods of 
matrix algebra to bear on the problem at hand, it is 
therefore expedient to decouple the numerical matrix 
coefficients occurring on the right-hand side of Eqs. 
(10) from the field operators. This can readily be 
accomplished if it is assumed that for equal times the 
commutation relations between the various com­
ponent fields are bilinear, Le., distinct component 
fields obeying ordinary statistics either commute 
or anticommute for equal times. The question 
whether, in the present context, a component field 
and its adjoint have identical equal-time commuta­
tion behavior with respect to other component fields 
is left open; i.e., in the derivation of Eqs. (12) for 
the sake of generality a component field and its 
adjoint are treated as independent entities as far 
as their bilinear equal-time commutation relations 
with other component fields are concerned. 

In any theory in which fields of both types are to 
be considered, the trilinear equal-time commutation 
relations implied by Eqs. (9), which have to be 
satisfied by the generalized fields, are6 

[\Zta(X), [\Ztp(x'), \Zt';(x")]-]-

= o(x - x')('YDa~\Zt';(X") 

- o(x - x")('YDa"(\Ztp(x'), (lla) 

[\Zta(X), [\ZtHx'), t/l(x")]-]-

= o(x - x')('Y~)..fJ4J(x"), (llb) 

[\Zt(X),4>(x')4>'(x")]- = 0, 

[t/lp(x), [t/l~(x'), t/l~'(x")]+]-

= i 8pF o(x - x')t/l~'(x") 

+ i bpp o(x - x")t/l~(x'), 

[4>ix), [4>~(x'), \Zt(x")]+]-

(11 e) 

(lld) 

= i 8pF o(x - x') \Zt(x"), (11 e) 

[t/l(x), \Zt(x')\Zt'(x")]- = o. (llf) 

Trying to satisfy the commutation relations (11) 
with two generalized fields, one of each type, having 
representations of the kind indicated in Eqs. (10), 
and assuming that for equal-times the component 
fermion and boson fields satisfy bilinear commuta­
tion relations, as explained above, without specifying 
what the bilinear commutation relations between 
any two component fields are, the following numeri­
cal matrix equations are obtained: 

[A.A" A;]_ = [A,A., An- = 0, (12a) 

[B,B" B:]_ = [B,B., B~]_ = 0, (12b) 

[A., [A:, A:L,]", = 0, 

[B i , [B;, B~LJ", = 0, 

t E [Ai, [A;, Ail.]" 
• ip1!i 

1 E [B., lB:, Bi]"],, 
• i;o!; 

[A., [Ai, An"],,, = 0, 

i ~ j, 

i ~ j, 

(12c) 

(12d) 

(12e) 

(12f) 

i ~ j, i ~ k, j ~ k, (12g) 

[B" [B~, B~').J", = 0, 

i ~ j, i ~ k, j ~ k, (12h) 

i ~ j, 

i ~ j, 

[B" [B;, A;].,]", = 0, 

1 E [A" [A;, B;h]'" = B;, 

t E [B" [B;, Ai]"]' = Ai, 
i 

(12i) 

(12j) 

(121) 

(12m) 

(12n) 
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[A" BjB j]_ = 0, 

[B;, AjA j ]_ = 0, 

[Ai, BjB;h = [Ai, BjBn", = 0, 

[B i, AjA;h = [B;, AjA~h = 0, 

j ~ k, 

j ~ k. 

(120) 

(12p) 

(12q) 

(12r) 

In Eqs. (12c)-(12n) each of the four indicated pos­
sibilities have, a priori, to be considered for each set 
of values of the subscripts i and j, or, i, j, and k, 
with the subscripts being unequal where so restricted. 
A similar statement applies with respect to the two 
possibilities which can in principle occur in each one 
of Eqs. (12q) and (12r). The various alternatives 
can a priori be realized depending on whether the 
component fields concerned commute or anticom­
mute for equal times. If for two distinct component 
fields obeying ordinary statistics a bilinear equal­
time commutation assignment is assumed or deter­
mined, it will, of course, be reflected in those of Eqs. 
(12), where the matrices associated with these two 
fields enter, and where several possibilities have in 
principle to be considered, depending on the bilinear 
equal-time commutation behavior of the two com­
ponent fields under consideration. Furthermore, the 
matrices associated with any component fields occur 
in several of the above matrix equations. The various 
alternatives indicated in different equations are, of 
course, not independent when they apply to the same 
matrices. If the locality between the component 
fields is assumed to be "normal", the upper signs are 
obtained in those equations where several possi­
bilities can be realized. 

In Eqs. (12) no summation is to be performed over 
repeated indices unless expressly indicated. The 
subscripts of the A matrices in Eqs. (12) can assume 
the values 1, ... , m, while the subscripts of the B 
matrices run from 1 to n, where m and n are integers 
which are determined by explicit matrix representa­
tions satisfying Eqs. (12). Furthermore, the symbols 
Ai can, independently of the A's with a different 
subscript and independently of the B's, stand either 
for the matrix Ai or for its "conjugate" A;. A similar 
statement applies to the symbols A:, B;, B: etc., 
and it is understood that for all subscripts 

(A:) t = A" (13a) 

and 

(BY = B i • (13b) 

Eqs. (12a), (12b), (120), and (12p) imply that, 
irrespective of the bilinear equal-time commuta­
tion relations between any two distinct component 

fields, the square of each one of the matrices under 
consideration commutes with all the other matrices. a 

A GENERALIZATION OF THE TRILINEAR 
COMMUTATION RELATIONS 

The trilinear commutation relations (9) do not 
properly take into account the matrix structure of 
the generalized fields. It is expedient to regard the 
trilinear commutation relations as transformations 
of the fields X and x'. Eqs. (9) can symbolically be 
expressed in the form 

T.p[x, x']- = (1/1, x)x' - (1/1, x')X, (14a) 

T</>[x, x'J+ = (cf>, x)x' + (cf>, x')x. (14b) 

In particular, 

<T ",[I{;, cf>]- = (1/11{; + 1{;1/I)cf> 

- 1/Icf>1{; - 1{;cf>1/I = (1/1, I{;)cf>. (15) 

Equation (15) indicates that contributions to the 
contraction factor, symbolically denoted by (1/1, I{;), 
occurring on the right-hand side of Eq. (15) come 
from terms in which the field cP stands between the 
fields 1/1 and I{;, and from terms in which cf> stands to 
the right (or left) of the fields 1/1 and I{;. 

The labels attached to the component fields specify 
the matrices with which the components respectively 
are associated. The matrices describe the interde­
pendence of the component fields and, as will be 
shown below, also completely determine the bilinear 
equal-time commutation relations of the compo­
nents. Since the generalized fields do not necessarily 
obey bilinear commutation relations, it is unrealistic 
to expect that, under the operations T", and T<I>, the 
components of the generalized fields will not be 
shuffled. Indeed, Eq. (15) suggests that the com­
mutation relations (9) should properly be generalized 
to 

[1/I,,(X), [x~(x'), X;(X")]_]-

= i o(x - x')(-yn,,~(x;(x") ± Mx;(x")M- 1) 

- i o(x - x")(-YDa'Y(x~(x') ± Mx~(x')M-1) (16a) 

14 If ins~ead of Eqs. q~) type-one fields werE; to be repre­
sente.d as lme.ar superposltiOns of boson fi!llds WIth numerical 
matnx coeffiCIents and type-two fields as linear superpositions 
of. fermio~ fields ~th matrix coefficientsl or if boson fields 
'!lth matnx coeffiClents were to be addea to the right-hand 
SIde of Eqs. (lOa) and (lOb) and fermion fields with matrix 
coefficients were to be added to the right-hand side of Eqs. 
(lOc) and (IOd), the numerical matrix equations obtained m 
analogy to Eqs. (12) no longer imply that the square of each 
matrix coefficient commutes with all the other matrices 
unless all the matrices vanish. ' 



                                                                                                                                    

1712 H. SCHARFSTEIN 

and 

[cf>,,(X), [x.(x'), X~(x")]+1-

= !i ~~. a(x - x')(x~(x") ± Nx~(x")N-l) 

+ !i ~~p a(x - x")(x,(x') ± Nx.(x')N- 1
). (16b) 

In order that Heisenberg's equations of motion 
for free fields be obtainable from Eqs. (16), it is 
necessary that the trilinear commutation (lla) and 
(lId), first discussed by H. S. Green/· 15 be contained 
in Eqs. (16) as special cases. This will be the case if 

!(If ± MlfM- 1
) = If, 

!(cf> ± Ncf>N- 1
) = cf>, 

(17a) 

(17b) 

i.e., fields of type one either commute or anticom­
mute with the matrix M, and fields of type two 
either commute or anticommute with N. Further­
more, regardless of the numerical transformation 
matrices M and N, Eqs. (16) also imply the following 
commutation relations considered by Kibble and 
Polkinghorne2 

: 

[1f(X), [cf>(x'), cf>'(x")]+1- = 0, (18a) 

[cf>(x), [1f(X'), 1f'(x")]-1- = O. (18b) 

As far as commutation relations are concerned, 
only Eqs. (lla), (lId), (18a) , and (18b) are neces­
sary for the construction of Hilbert spaces for free 
fields. 

In those trilinear equal-time commutation rela­
tions in which the generalized field quantities are 
either all kinematically related or all kinematically 
unrelated, the transformation matrices M and N 
do not explicitly occur. Hence, in Eqs. (11), only 
Eqs. (Ub) and (Ue) have to be modified. Similarly, 
in Eqs. (12) only Eqs. (12m) and (12n) must be 
changed in an obvious manner. 

It turns out that, at least for the representations 
to be discussed, the matrix structure of the gener­
alized fields and the bilinear equal-time commutation 
relations between the component fields are derived 
from those of Eqs. (12) which are homogeneous in 
the matrices, Le., from those matrix equations in 
which the matrices M and N do not explicitly ap­
pear. Equations (16) therefore have to be regarded as 
equations for M and N with the generalized fields 
given. This procedure is somewhat analogous to the 
procedure referred to in the classical Lagrangian 
formalism as the "method of undetermined multi­
pliers." 16 

15 E. P. Wigner, Phys. Rev. 77, 711 (1950). 
Ie Cf., for example, C. Lanczos, The Variational Principles 

of Mechanics (The University of Toronto Press, Toronto, 
1949), p. 43 et seq. 

In fact, the commutation relations (16) can be 
readily obtained from the action principle. The 
numerical matrices M and N, in addition to satisfy­
ing Eqs. (16) and (17), must also satisfy the fol­
lowing relations, which are obtained with the aid 
of Eqs. (3a), (3b), (4a), and (4b): 

[[1f(X), G(If)]-, x(x')]- = i[N(x), x(x')]-

= i[alf(x), !(x(x') ± Mx(x')M- 1
)]_, (19a) 

[[~(x), G(~)]_, x(x')]- = -i[a~(x), x(x')]-

= -i[a~(x), !(x(x') ± Mx(x')M- 1
)]_, 

[[cf>(x), G(cf»]-, x(x')1+ = i[&/>(x), x(x')]+ 

(19b) 

= i[acf>(x), !(x(x') ± Nx(x')N- 1)]+, (19c) 

and 

[[1I"(x), G(1I")]_, x(x')1+ = -i[w(x), x(x')]+ 

= -i[a1l"(x), !(x(x') ± Nx(x')N- 1)]+. (19d) 

If in the process of deriving commutation relations 
from the action principle, i.e., if in the derivation of 
Eqs. (5) and (6) use is made of Eqs. (19), the trilin­
ear commutation relations (16) are obtained instead 
of Eqs. (9). 

In general, the matrices M and N are expected to 
depend on the generalized fields in whose trilinear 
commutation relations M or N appear. 

ALGEBRAIC CONSIDERATIONS 

In view of Eqs. (12), the algebra generated by a 
set of matrices Ci will be studied under the assump­
tion that the generators satisfy the equations 

[C~, C j ]_ = 0, for all i and j, (20) 

and for i ~ j, i ~ k, j ~ k 

(21) 

In Eq. (21) all the four indicated possibilities com­
patible with trilinear algebraic identities are 
considered for any set of values of the subscripts 
i, j and k. 

Eqs. (20) and (21) imply that for all values of 
i, j, and k 

[[(CiCjCiCjt + (CjC,CjC;),,], Ck1- = 0, (22) 

where n is an arbitrary (nonnegative) integer. Equa­
tion (22) is valid regardless of which of the alterna­
tives indicated in Eq. (21) are realized by any triplet 
of matrices. 

Eqs. (20) and (21) imply that, for any irreducible 
matrix representation of operators satisfying Eqs. 
(20) and (21), 
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C~ = dJ 

and 

(23) C1 and C2 belong to one subset and C3 to the other, 
whereas in case (B) C1 , C2 , and C3 belong to one sub­
set and C4 and C5 to the other. Specifically, the 

(24) generators are defined by the following equations: 

where d, and d. j are numerical factors and 1 is the 
unit matrix. 

Eqs. (21) and (23) suggest that the generators of 
an irreducible representation can be normalized in 
such a manner that their square, unless it vanishes, 
is equal to unity, i.e., for any irreducible representa­
tion, 

C~ = lor O. (25) 

The normalization (25) implies that for the algebra 
in general the generators can be chosen in such a 
manner that for all i 

C! = C~. (26) 

Any algebraic expression of order higher than m2 

in the generators of an irreducible representation of 
the algebra generated by m generators can, with 
the aid of Eqs. (21), (23), and (24), be reduced to a 
linear superposition of terms, none of which is of 
order higher than m2 in the C,'s. Any irreducible 
matrix representation of the algebra generated by a 
finite number of operators satisfying Eqs. (20) and 
(21) is therefore of finite dimensionality. 

In order to satisfy Eqs. (16), the trilinear com­
mutation relations satisfied by the generating mat­
rices must be chosen and the numerical factors 
occurring on the right-hand side of Eqs. (23) and 
(24) must be assigned in such a manner that, not 
for all the associated irreducible matrix representa­
tions, a bilinear commutation behavior of each pair 
of generators is also implied. Moreover, two distinct 
component fields obeying ordinary statistics are 
supposed to either commute or anticommute for 
equal times but not both. Furthermore, it should be 
possible to define a relationship between Ai and A! 
and between B, and B: in such a manner that Eqs. 
(16) are satisfied. These requirements single out the 
possibilities which have to be examined. 

Two special cases will presently be considered: 
(A) The case of three generators. (B) The case of 
five generators. In each case any triplet of genera­
tors is supposed to satisfy trilinear commutation 
relations of the type indicated in Eq. (21). Moreover, 
in both cases the generators are required to be 
divisible into two subsets in such a manner that each 
generator belonging to either subset commutes with 
the product, taken in any order, of any two genera­
tors belonging to the other subset. In case (A) 

C~ = I, {i = 1,2,3 for case (A), (27) 

i = 1, ... ,5 for case (B), 

and 

C,CjC,Cj + CjC,CjC, = -21, (28a) 

if Ci and C j (i :;e j) belong to the same subset, while 

(28b) 

if C. and C j do not belong to the same subset. Fur­
thermore, (if no misunderstanding can arise the 
generating matrices will simply be indicated by their 
subscripts only): 

For case (A): [1, (2,3]_]_ = [2, [3, 1]_]_ 

= [3, 12]_ = [3, 21]_ = O. (29a) 

For case (B): [1, [2, 3]-1- = [2, [3,1]-1-

= [3, [1, 2J-1- = 0; (29b) 

and nine equations of the form 

[i, (j, kJ-1- = [j, [k, ~1-1-

= (k, iJ1- = [k, j~l- = 0, (29 c) 

where C k does not belong to the subset containing 
C, and Cj • 

From Eqs. (27), (28), and (29), the following bilin­
ear commutation relations are obtained: 

For case (A): (1, 2]+ = O. (30a) 

For case (B): [1, 2]+ = [1, 3]+ 

= (2,3]+ = [4,5]+ = 0; (30b) 

i.e., any two generators contained in the same subset 
anticommute. However, Eqs. (27), (28), and (29) 
also imply that any two generators C, and Cj 

belonging to different subsets cannot possibly satisfy 
a bilinear commutation relation of the form 

(31) 

where k is a numerical factor equal to or different 
from zero. The above equations also imply that 

C,CjCk = -CkCjC. 

for i;6 j, t;6 k, i;6 k. (32) 
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The linearly independent elements of the two irreducible representations of the algebra under con­
sideration can be chosen in such a way that the square of each is a multiple of the identity: 

Case (A) 16 linearly independent matrices 

I 

1,2,3 

12 - 21, 13 ± 31, 23 ± 32 

123, 132, 131, 313, 323 

1313, 1323. 

Case (B): 64 linearly independent matrices 

I 

1,2,3,4,5 

12 - 21,13 - 31,23 - 32,45 - 54 

14 ± 41, 15 ± 51,24 ± 42, 25 ± 52, 34 ± 43, 35 ± 53 

123 

(12 - 21)4, (12 - 21)5, (13 - 31)4, (13 - 31)5, (23 - 32)4, (23 - 32)5 

(45 - 54)1, (45 - 54)2, (45 - 54)3 

142,143,243,152,153,253,415,425,435 

141,151,414,424,434 

(12 - 21)(45 - 54), (13 - 31)(45 - 54), (23 - 32)(45 - 54) 

1414 

1425, 1435, 2435 

12(34 ± 43), 12(35 ± 53) 

1415, 4142, 4143, 4243 

41234, 41235, 12345. 

The generators can be chosen to be Hermitian. 
For example, 

(33 c) 

Case (A): 

C1 = rITx 0] j C2 = [IT. 0] Cs = lO IT,,], 

where the 4 X 4 gamma matrices are conventionally 
defined by 

LO IT. '0 IT$ 

where IT" and u. are Pauli matrices. 

Case (B): 

C1 = 
[ _°1'1 ~ll ; C2 = 

[_°1'2 

Ca = f ° ~aJ . 
l-1'3 

IT" ° 
(33a) 

~2l ; 
(33b) 

(34b) 

and 
III • 1'6 == ~'Y1'Y2'YaI'4. (34c) 

It is expedient to select for consideration all those 
of the above listed elements of the two representa­
tions which are of odd order in the generators and 
to make the following definitions: 
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Case (A): 

A: = kl; 
t 

A2 = k2; 

A! = k3l3; 

A. = A! = k323; 

Case (B): 
t 

A1.1 = A I • I = kl; 
t 

AI., = AI.2 = ik4l5; 
t 

Al.3 = AI •3 = k4l4; 

AI .• = A: .• = ik145; 
t 

A2 •1 = A2 •1 = k2; 

A 2 ., = A:.2 = ik425; 
t 

Au = A 2 •a = k424; 
t 

A 2 •• = Au = ik245; 
t 

A S • I = A s . I = k3; 

AS •2 = A~.2 = ik435; 
t 

Au = As.s = k434; 

As .• = A: .• = ik345; 
t 

A •. I = A •. I = ik123; 
t 

Au = A •. 2 = k4l235; 

A •. s = A!.3 = ik4l234; 
t 

A •.• = A •.• = k12345; 

t 
BI = k3, 

B: = ikI32, 
t Ba = kI3I, 

B. = B! = ik123. 
(35a) 

t 
B I • I = B1.1 = k4, 

t 
B I •2 = B I •2 = k5, 

t 
B I •S = B I •S = kI41, 

t 
B I •• = B I •4 = k151, 

B2 • 1 = B:. 1 = ikI24, 

B2 •2 = B!.2 = ik125, 

B 2 •a = B!.s = ik142 , 

B 2 •• = B!.4 = ik152 , 

Ba. l = B!.l = ik234 , 

Ba.2 = B:., = ik235 , 

Ba.s = B!.a = ik243 , 

Ba .• = B! .• = ik253 , 

B •. 1 = B:. 1 = ik134, 

B •. 2 = B!.2 = ik135, 

B •. a = B!.3 = ik143, 

B •.• = B! .• = ik153. 

(35b) 

The matrices listed above have the following 
properties: The square of each is equal to k' I, 
where k is a normalization factor. Any two A's, 
belonging to the Same representation, either com­
mute or anticommute. The same is true with respect 
to each pair of B's. No A satisfies a bilinear com­
mutation relation with a B. Any triplet of matrices 
belonging to the same representation satisfies trilin­
ear commutation relations of the type exhibited 
in Eq. (21). Moreover, each A commutes or anti­
commutes with the product, taken in any order, of 
each pair of B's. The same is true for each B with 
respect to the product of any two A's. 

The A's will be associated with fermions and the 
B's with bosons. If the opposite procedure is adopted, 
which can be done, no new results are obtained. 
Tables I-IV, which summarize the bilinear equal-

time commutation relations between the component 
fields for the case that the A's are associated with 
fermions and the B's with bosons, are identical to or 
can be transformed (by suitable permutations of 
rows and columns) into the tables obtained when the 
A's are associated with bosons and the B's with 
fermions. 

Only those of Eqs. (12) which are homogeneous 
in the matrices have so far been used explicitly. These 
homogeneous equations also determine the bilinear 
equal-time commutation relations between the com­
ponent fields. Equations (16) or (9) imply the fol­
lowing commutation rules: If the matrices respec­
tively associated with two fermion fields commute, 
the fermions anticommute for equal-times. If the 
matrices anticommute, the fermions commute. If the 
matrices respectively associated with two boson 
fields commute, the bosons commute for equal­
times. If the matrices anticommute, the bosons 
anticommute. For bilinear equal-time commutation 
relations involving a fermion and a boson field, there 
are two possibilities in each case. For each repre­
sentation a fermion and a boson field selected at 
random can be assumed to commute or to anti­
commute for equal times. The bilinear equal-time 
commutation relations between all fermion and 
boson fields associated with the same representation 
are then determined. The following alternatives can, 
for example, be considered: 

(36a) 

(36b) 

TABLE I. Bilinear equal-time commutation relations between 
the component fields for case (A). 

+ + 

+ + 

+ + 

+ + 

f6-r + + + + 

,sl + + + + 

9i~ + + + + 

IS. + + + + 

'f. ~ '\'3 '1'", ;", ~3 ;1. ;. 
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TABLE II. Bilinear equal-time commutation relations between the fermions [case (B)]. 

+ + + + + + 

+ + + + + + +.-

+ + + + + + + 

+ + + + + + + 

+ + + + + + + 

+ + + + + + + 

+ + + + + + -+ 

"'31 + + + + + + + , + 

~Jt + + + + + + + + 

't'u + + + + + + + , + 

'f'1.,:.. + + + + + + + + 

\flo I + + + + + + + , + 

't'1,'t + + + + + + + + 

'i'1)\ + + + + + + + + 

"1. + + + + + + + 
I 

+ 

'r.,1 + + + + + + + + 

(lfl.l(X), CPl.l(X')]- = 0, (36 c) 

(lfl.l(X), CPl.l(X')]+ = 0, (36d) 

where Ifl' CPI, 1f1.1, and CPl.l are the component fields 
associated with the matrices AI BI Al I and B , , t , 1.1, 

respectively. 
The bilinear equal-time commutation relations 

between the component fields for the case of three 
generating matrices are summarized in Table I 
and for the case of five generators in Table~ 
II-IV. Table I is based on alternative (36a) and 
Table IV on alternative (36c). If alternatives (36b) 
and (36d) were respectively adopted instead all 
the signs in the lower left-hand quadrant of Table 
I and in Table IV have to be reversed while the other 
tables are not affected (a + sign indicates that the 
two-component fields concerned anticommute for 
equal-times). Actually, it makes no difference which 
one of the alternatives (36a) and (36b) is adopted 
for case (A), because the tables associated with one 
alternative can be transformed into the tables as­
sociated with the other alternative by suitably per-

muting rows or columns. A similar statement applies 
to alternatives (36c) and (36d) of case (B). 

Tables I-IV show that, if the commutation 
relations of a component field with itself are taken 
into account, each component field commutes for 
equal times with as many component fields as it 
anticommutes with. Commutation and anticom­
mutation relations thus naturally occur in a sym­
metric way, each row and each column in the tables 
containing + and - signs in equal numbers. 

The simplest assumption consistent with Eqs. 
(16) concerning Ai and A: (and Bi and B:) has been 
made in Eqs. (35), namely that they are equal. 
Other possibilities can be investigated. Because of 
the assumption made, a component field and its 
adjoint have identical equal-time commutation be­
havior with respect to all the other component 
fields. 17 

When each one of the matrices of Eqs. (35) is 
multiplied by its component field, two sets oj. gen-

17 In this connection see G. F. Dell'Antonio, Ann. Phys. 
(N.Y.) 16, 153 (1961). 
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TABLE III. Bilinear equal-time commutation relations between the bosons [case (B)]. 

+ + + + + + + 

+ + + + + + + 

+ + + + + + + 

~ + + + + + + + + "1,'1' 

'" + + + + ++ + + "loll 

,,~ + + + + + + + + 

~ + + + + + + + + ":l;~ 
~ + + + - + + + + + 
'l'Z}t 

~ + + + + + + + + 
"~,, 
4 + + + + + + + + 
"3)1< 

~ + + + + + + + + 
"a~ 
~ + + + + + + + + Jl3,'t 

~ + + + + + + + + ",,",1 

~ + + + + + + + + 
'1;1. 

~ + + + + + + + J''t~ + 
~ + + + + ++ + + 
~'t-L-____________________________________________ ~ 

eralized fields of different dimensionality are ob­
tained, provided the component fields satisfy the 
bilinear equal-time commutation relations given in 
Table I in the case of the four-dimensional rep­
resentation, and in Tables II-IV in the case of 
the eight-dimensional representation. It is a simple 
matter to verify that, for each triplet of the resulting 
generalized field quantities associated with the same 
representation, it is possible to construct nonsingular 
matrices M and N in such a manner that Eqs. (16), 
(17), and (19) are satisfied. Each generalized field 
thus contains only one component. This means that, 
as a free field, each component can be considered 
independently of the other component fields. How­
ever, for the four-dimensional representation, four 
different component fields are readily available for 
each spin. IS For the eight-dimensional representation 

18 The matrices (35) associated with the fermion and 
boson fields are linearly independent. If the requirement of 
linear independence is relaxed, a greater number of component 
fields can be obtained, and the tables summarizing the 
bilinear equal-time commutation relations would consequently 
have to be enlarged. 

sixteen component fields differing from each other 
in their bilinear equal-time commutation relations 
are similarly available for each spin. IS For the eight­
dimensional representation, several component fields 
can conveniently be grouped together into one gen­
eralized field, provided the normalization factor k 
in Eqs. (35b) is suitably adjusted. For example, 
applying Eqs. (lOa) and (lOb) to those A matrices 
multiplied by their associated fermion field com­
ponents which, in Eqs. (35b) and Tables II and 
IV, have the same second subscript, one obtains 
four generalized type-one fields, each having four 
components. Similarly, all the B's with the same 
second subscript and their associated bosons can be 
grouped into four generalized type-two fields. For 
each triplet of generalized fields so obtained, it is 
possible to construct matrices M and N in such a 
manner that Eqs. (16), (17), and (19) are satisfied. 
For example, for the two generalized fields 

'" = 2-1 L: Au"'.,1 (37a) 
i-1 
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and 

(37b) 

all relevant commutation relations are satisfied pro­
vided k = !, 

In the eight-dimensional representation, there is a 
wider range of possibilities, as Table IV shows. This 
difference between the two representations is re­
flected in the interactions of the component fields 
respectively associated with the two representations. 

INTERACTIONS 

N = N-1 = C., (38b) 

and the + signs are chosen on the right-hand sides 
of Eqs. (16) and (19). 

Higher dimensional representations of operators 
satisfying the commutation relations (16) can be 
generated from the four-dimensional representation 
by forming the direct products of the matrices given 
in Eqs. (35a) with the Pauli matrices or with the 
gamma matrices. 

Table I indicates that, any two distinct fermions 
associated with the four-dimensional representation, 
have either identical or opposite bilinear equal-time 
commutation behavior with all boson components. 

The requirement that all relevant variational ex­
pressions possess right-left symmetry with respect to 
the coefficients and positions of the variations neces­
sitates the introduction of a numerical matrix into 
trilinear interactions of generalized fields. 6 For ex­
ample, if the numerical matrix K in the local trilin­
ear interaction Lagrangian density 

Hermitian conjugate (39) 

has the property that 

[$a(X), [K, q,(x)]+]_ = [~b(X), [K, q,(x)]+]_ = 0, 

(40) 

TABLE IV. Bilinear equal-time commutation relations between fermion and boson fields [case (B)]. 

+ + + + + + + + 

+ + + + + + + + 

rpli~ + + + + + + + + 

¢~ + + + + + + + + 

~"/I + + + + + + + + 

{6~), + + + + + + + + 

~H + + + 
I 

+ + + + + 

{b'/t + + + + + + + + 

~ + + + + "',,,, + + + + 

-3)" + + + + 
J 

+ + + + 

~~ + + + + + + + + 

~~ + + + 
I 

+ + + + + 

¢"r} + + + + + + + + 

rjJ'tjl. + + + + + + + + 

~ + + + + 
"'t,\ 

+ + + + 

~ + + + + 
'P'JI' 

+ + + + 
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the variations, which are obtained in the process of 
deriving the equations of motion from Eq. (39), can 
be moved to the right or left in such a manner that 
for type-one field variations the resulting coefficients 
are equal except for sign, while for type-two field 
variations the coefficients are equal including sign, 
which corresponds to the symmetrization of the 
free-field Lagrangians of the two types of fields. 
Furthermore, the total Lagrangian density must 
have a self-consistent matrix structure, so that, as 
the net result, a compatible set of scalar equations 
of motion for the component fields is obtained. As 
a consequence, the two fermions respectively as­
sociated with the generalized type-one fields in the 
interaction (39) must have identical equal-time 
bilinear commutation relations with the boson asso­
ciated with the generalized type-two field entering 
the interaction: if the fermions commute for equal 
times they must anticommute with the boson; if 
the fermions anticommute they must commute with 
the boson field. If the two fermion fields in Eq. (39) 
have different first subscripts, Table IV indicates 
that, for the eight-dimensional representation, the 
boson entering the interaction can, for any suitable 
integral spin, be realized a priori in four different 
ways. Furthermore, if the subscripts a and b in 
Eq. (39) are set equal, there are, for each haIf­
integral spin value in the eight-dimensional rep­
resentation, eight fermions which can, and eight 
fermions which cannot, enter into the resulting 
minimal interactions with any specific type-on~ field 
of suitable integral spin. 

The matrix 

(41a) 

anticommutes with all the matrices (35a). Similarly, 
the matrix 

C1C4C1C4 = C1C5C1C5 = C2C4C2C4 

= C2C5C2C5 = C3C4C3C4 = C3C5C3C5 (41b) 

anticommutes with all the matrices (35b). As a 
consequence, the fermions respectively associated 
with the matrices Ai and CsA,Cs (and, similarly, 
the bosons respectively associated with Bi and 
C1B iC1 ), where Ai is anyone of the A's given in 
Eqs. (35a), have opposite bilinear equal-time com­
mutation behavior with respect to all the other 
component fields associated with the same repre­
sentation [cf., Table I). A similar statement applies 
to the matrices Ai; and C4AiiC. in the case of the 
eight-dimensional representation [Eqs. (35b) and 
Tables II-IV]. As a consequence, in the case of the 

eight-dimensional representation, the fermions re­
spectively associated with Aii and C4AijC. cannot 
"decay" into each other via a trilinear interaction. 

The selection rules mentioned are, of course, valid 
regardless of which of the alternatives (36) are 
selected for consideration in each case. 

CONCLUSIONS 

The irreducible representations of generalized field 
operators considered not only specify the bilinear 
equal-time commutation relations between the com­
ponent fields in an essentially unique manner, but 
also contain information concerning the number of 
different ordinary fields which can be expected in 
each case. 18 Since the trilinear equal-time commuta­
tion relations are specified, no Klein-transformations 
to the "normal case" can be effected for the fermion 
and boson fields associated with the matrices (35), 
and in this respect the component fields differ from 
conventional fields. 19

-
27 For the representations dis­

cussed 

[~<x(x), ~~(x/)]+ = o(x - x/)(-y~),,~I (42a) 

and 
[q,p(x), q,~(x/)]_ = i o(x - x') ~p.I, (42b) 

i.e., kinematically related and unrelated generalized 
type-one field quantities obey equal-time anti-com­
mutation relations and kinematically related and 
unrelated generalized type-two field quantities obey 
equal-time commutation relations. Although gen­
eralized field quantities of different types neither 
commute nor anticommute for equal times, all phys­
ical causality requirements are satisfied, because, 
for the representations considered, any two observ­
abIes commute for spacelike separations of the argu­
ments. Because of the matrix structure of the gen­
eralized fields, the bilinear equal-time commutation 
relations between the component fields appear in a 
new context. 

The possible physical relevance of any representa­
tions of field operators satisfying the trilinear com­
mutation relations (16) and the interactions of these 
fields are currently being investigatf\d. 

19 O. Klein, Zh. Techn. Fiz. (USSR) 9, 1 (1938). 
20 S. Oneda and H. Umezawa, Progr. Theoret. Phys. 

(Kyoto) 9, 685 (1953). 
2L T. Kinoshita, Phys. Rev. 96, 199 (1954). 
22 H. Umezawa, Quantum Field Theory (North-Holland 

Publishing Company, Amsterdam, 1956), p. 197. 
23 R. Spitzer, Phys. Rev. 105, 1919 (1957). 
24 G. Liiders, Z. Naturforsch. l3a, 254 (1958). 
20 T. Kinoshita, Phys. Rev. no, 978 (1958). 
26 H. Araki, J. Math. Phys. 2, 267 (1961). 
27 For an illuminating comment concerning the normal 

case compare the lecture notes of A. S. Wightman in Theo­
retical Physics (International Atomic Energy Agency, Vienna, 
1963), footnote on p. 29. 
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On the Existence of Field Theory. I. The Analytic Approach 

J. G. TAYLOR 

Department of Physic.~, Rutgers, T~e State University, New Brunswick, New Jersey 
(ReceIved 16 June 1965) 

The problem o~ existence of solutions to local field equations is studied. We set up the field equations 
so that the solutlOns correspond to fixed points of a mapping of the space of Green's functions into 
them.selves. W~ atte~p~ to use analytic methods to determine these fixed points, in particular, the cou­
~ractIo~ mappmg prmClple. To do this we perform a rotation to Euclidean space from Lorentz space' 
m Euclidean s-pace we p!-"ove the exis~~nce of solutions to a large class of approximating equations t~ 
the ~eld equatlOns, obtamed by requmng the Green's functions to be zero if they have more than a 
certa~n number ?f external particles. By this method we prove that there is only the tirvial zero 
solutlOn to certam types of bootstrap equations. The contraction mapping theorem does not appear 
powerful enough to dISCUSS the complete field equations. 

1. INTRODUCTION 

SINCE the field equations were introduced thirty­
five years ago l as a natural way to describe 

processes involving the creation or annihilation of 
particles, there has been a lively discussion as to 
whether or not these equations are self-consistent. 
The high-energy divergences which initially arise 
in their perturbation expansion were thought to 
lead to their inconsistency. In other words, it was 
claimed that it was not possible to reconcile the 
usual theory of quantum mechanics and the theory 
of special relativity with a formalism involving local 
interactions between particles at well-defined points 
of space-time. This was especially evident, since 
all physical quantities were infinite when calculated 
to high enough orders of perturbation theory. 

The renormalization procedure for quantum elec­
trodynamics, developed after 1947,2 enabled finite 
results to be obtained, with remarkable experimental 
agreement, for all observable quantities. This process 
still left a nasty taste in many mouths, nor did it 
apply to strong, weak, or gravitational interactions. 

For both these reasons, two new approaches to 
field theory were attempted, these being the axio~ 
matic field theory3 and the S-matrix theory.4 These 
approaches tried to use the essential properties con~ 
tained in local field equations. It was hoped that 

~ W. Heisenberg and W. Pauli, Z. Physik 56,1 (1929). 
See, for. example, . the collected papers. in Quantum 

Electrodynam'tCs, J. Schwmger, Ed. (Dover Publications Inc. 
New York, 1958). ' , 

~ See, for e~a~ple, A. S. Wightman and R. Streater, "peT, 
Spm and Statut'tCs and All That (W. A. Benjamin Company 
Inc., New York, 1961). ' 

4 See, for examplet., G. Chew, S~Matrix Theory of Strong 
Interactions (W. A. tlenjamin Company, Inc New York 
1961). .,' 

these properties would be strong enough to give dy­
namical predictions, but weak enough to avoid the 
high-energy divergences. However, these approaches 
are still not able to give a complete dynamical theory 
of elementary particles. 

We would like to suggest here that, of the many 
possible ways of attempting to set up a useful and 
complete dynamical theory, the one most likely 
to lead to the sure ground of experimental facts is 
that which tries to understand the present success 
of quantum electrodynamics by taking a closer look 
at the methods used to achieve this success. This 
means giving a careful discussion of the equations 
of conventional field theory. 

A first step in this discussion has been given 
earlier,S where the equations of conventional field 
theory were maneuvered into a form-the canonical 
form, which most likely avoids high-energy diver­
gences-and discussed further. Great difficulty was 
met in actually solving the equations. In such a 
situation, it may be useful to consider the existence 
of solutions to the equations. This is what we at­
tempt in this and succeeding papers. In the process 
of this investigation, it is hoped that we will gain 
insight into the nature of the solutions, if they exist, 
and into the approximate methods which may be 
set up to obtain their numerical value. 

We found in Ref. 5 that the Green's functions 
equations arising from a particular conventional 
field theory are an infinite set of coupled nonlinear 
integro-d.ifferential equations. They are coupled in 
such a way that we cannot obtain an exact set of 

• 6 J. G. Taylo.r, Nuovo Cimento Suppl. 1, 857 (1963). The 
SlX papers ~ontamed there will be referred to as I-VI. See also 
K. Symanzlk, Lectures in High-Energy Physics, B. Jaksic Ed., 
(Federal Nuclear Energy Commission of Yugoslavia Zagreb 
1961), pp. 485-517. ' , 
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equations for any finite subset of the functions. 
Evidently, the methods we use have to be as 
powerful as modern mathematical techniques allow; 
we find that we even have to improve some of these 
techniques in order to apply them to our problems. 
Our main tool is the fixed-point theorems of both the 
analytical and topological type. 

Our basic approach is constructive; we take 
a particular set of Green's functions equations and 
attempt to find suitable mathematical conditions 
to be imposed so that a solution of the equations 
exists. This approach is the opposite to that of the 
axiomatic field theorists. In our approach, we may 
start by talking nonsense, but we have to make good 
sense out of the nonsense in the end; in axiomatic 
theory, nonsense is ruled out from the beginning. 
In our making sense out of nonsense, we use any 
analyticity properties which seem consistent with 
our equations and useful for solving them; such 
analyticity is only proved sensible in the final steps 
of our discussion. 

That is the purpose of this and following "papers. 
Our discussion is, of necessity, highly mathe­
matical, depending on techniques of topology, func­
tional analysis, and functions of many complex 
variables. We cannot avoid this heavy use of mathe­
matical techniques; we feel that it is necessary to 
actually prove results about this very complex set 
of equations, since almost anything can be con­
jectured about them (as has been the case in the 
past). 

2. THE EQUATIONS 

We will consider in this paper only field theories 
with no high-energy divergences in perturbation 
theory. In particular, let us consider a single neutral 
scalar particle of mass m in a space-time of one 
time and one space dimension. The field theory we 
take will be given by the interaction Lagrangian 
.cI = gq/ for the field <1> of the particle. Upon canon­
ical quantization, the resulting quantized field equa­
tions give rise to a set of coupled nonlinear integral 
equations connecting the various Green's functions 
which can be defined in terms of <1>. These equations 
were developed and discussed in Ref. 5. We will 
use the same notation as that of Ref. 5, so that these 
Green's functions equations (GFE's) become [see 
Eq. (59) of IJ 

0" = <0" + {5). 
(1) 

In (1) the bubble On multiplied by 04(L: Pi) 

denotes the connected part of the Fourier transform 

where K", = (O! - m2
), and so is the off-mass-shell 

continuation of the S-matrix elements given by the 
field <1>. The internal lines denote -iDp(p) = 
i[ -p~ + p2 + m2 

- ittl. There is integration over 
all momenta carried by internal lines, and there is 
energy momentum conservation at each vertex, 
which denotes -g. 

We note that 0 .. may be regarded as the (formal) 
sum of all Feynman diagrams for a process with 
exactly n internal particles, but with the external 
bare propagators for these particles removed. 

We do not have to consider here the canonical 
or renormalized form of field equations discussed 
in Ref. 5, since our Eq. (1) for a convergent theory 
will be equivalent to this form. When we turn to 
theories with high-energy divergences, it will be 
necessary to discuss the canonical form only, 
since (1) will very likely contain the high-energy 
divergences. Also, we will consider only the con­
nected part of the Green's functions, since the discon­
nected parts will contain a-functions which would 
make our discussion of existence more difficult. 

How do we go about proving the existence of a 
solution to (I)? We are interested in the infinite set 

of Green's functions ( On) , and may re-

n"l. 
gard each of these Green's functions as belonging to 
a vector space of functions. The space of functions 

On will be denoted by En; we will not specify 

it immediately, but assume it has a topology T .. in 
which E.. is a locally convex topological vector 
space.6 Thus, we are interested in a point x = 

( On) in the product space E = II""2 E ... 
n"l. 

It is natural to take on E the product topology 
Tr = II""2 T .. , though we will discuss this and other 
topologies on E later. We may write Eq. (1) in the 
form 

x = T(x) , x .. = T .. (x), (2,2') 
8 We use the definitions in N. Bourbaki, Elements de 

M athematique, Livre V, Espaces Vectoriels Topologiques 
(Hermann & Cie., Paris, 1954), Chaps. I-V. 
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where 

T,,(x) = 

in a simple fashion because (a) the principal-value 
singularities arising in the internal propagator linesi 
(b) the Lorentz group is locally compact but not 
compact, so that power counting does not apply. 

+ I-i' Srli • Thus, an integral like 

So we see that a solution to the field equation (1) 
is a fixed point of the mapping T, and vice-versa. 
T is a mapping of E into itself, so our problem 
is to find a suitable space E and a suitable topology 
on E so that T has a fixed point in E. In the mathe­
matical discussion of fixed-point theory, 7 .8 there are 
two distinct avenues of approach. One is analytical, 
via the contraction mapping theorem, the other is 
topological, via the definition of the topological 
degree of a mapping. 

The contraction mapping theorem justified the 
iteration approach to Eq. (2), and, besides giving 
an existence theorem, it proves uniqueness and 
provides an approximation scheme. The properties 
required for the theorem to apply are, however, 
much stronger than can be satisfied by many map­
pings, so that we will have to be prepared to re­
linquish the analytical approach if we still wish to 
talk about solving the actual equations. 

The topological approach only proves existence 
in general, so that both uniqueness and how to 
approximate the solution are not going to come out 
of the analysis immediately. However, at least as 
a first step, we would like to prove existence. To do 
that our mapping still has to have suitable properties, 
or rather we have to be able to choose E and r 
so that it has these properties, the main one of which 
is the complete continuitl of T. This is the property 
which we later find not to be satisfied by T for 
any (E, r), and we therefore have to extend the 
topological approach to accommodate our case. But 
this will not be done in this paper. 

For either of the approaches mentioned, it is 
necessary to have a topology on E so that T is at 
least continuous. In considering the type of topology 
best suited for our needs, we would naturally attempt 
to make estimates of the size of T(x), or of T(x) - T(y) 
as x approaches y. This immediately brings us to 
the difficulty that it is not possible to estimate the 
sizes of terms on the right-hand side of (1) or (2) 

7 J. Cronin, "Fixed Points and Topological Degree in Non­
linear Analysis," Amer. Math. Soc. Math. Surveys, No. 11 
(1964). 

I K. Krasnoselskii, Topological Methods in the Theory of 
Nonlinear Integral Equations (Pergamon Press, London, 
1964). 

8 Ref. 7, p. 131. 

f d4 k[W)2 + 1]-137 

is divergent if e is the Lorentz-invariant k~ - k2
• 

Both of these difficulties are inherent in the 
Lorentz metric of momentum space. We would 
avoid these difficulties in a Euclidean space, so we 
would like to continue (1) and (2) to a Euclidean 
metric. This will be done, in the next section, by a. 
generalized Wick rotation1o through 90° in the com­
plex energy plane, ko -+ iko, in all energy variables, 
both internal and external in (1). 

3. ANALYTIC CONTINUATION 

The GFE (1) is an equation relating functions 
evaluated at real momenta only. (1) may only have 
solutions which possess no analyticity in these 
momenta. In order to achieve the generalized Wick 
rotations mentioned above, we have to search for 
solutions which possess some analyticity in energy. 
If there are none, then other methods will have to 
be developed. But until we fail, we will search for 
analytic solutions. What analyticity may we expect 
for solutions of Eq. (I)? To answer that we need 
to determine the region of analyticity which is 
preserved by T in (2). We will naturally start by 
looking for the largest such region of analyticity, 
which is given by 

Theorem 1: The largest region of analyticity of 

the set of Green's functions ( On 1 in the energy 

variables and consistent with T is a product of cut 
planes, the cuts starting from the normal thresholds. 

In detail, if 

On = Mn(Pl' ... Pn), 

then M" is analytic in the product of complex planes 
for PiO (i = 1, .,. , n) with cuts given by 

PIO = 1: PiO real, iPlOi ~ (p~ + 4m2)t, 
ilEI 

where I is any sub-interval of the interval [1, n] 
in the set of integers, together with possible poles 
atp~=m2. 

10 G. C. Wick, Phys. Rev. 96, 1124 (1954). 
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- PJO - [(PI + k)' + 4 m'l pO + PJO - [(P + PI - k)' + m'l! - [k' + m'll -PJO + [(PI + k)' + m'll -PJO + [(PI + k)' + 4m'lt 
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pO - [(P - k)' + m'll pO + [(p - k)' + m'l! [k' + m'll pO + Plo + [(P + PI - k)' + m'lt 

FIG. 1. The position of singularities in the ko plane arising in the integrand of Eq. (3). 

As may be seen by inspection, this analyticity is 
exactly that satisfied by every term in perturbation 
theory and contains no anomalous thresholds. The 
latter only arise when continuation is also made 
in the space-parts P. of the momenta. 

We prove the theorem as follows. We assume that 

x is composed of components On, each of which 

has the analyticity stated in the theorem. This is 
then substituted into the right-hand side of (1), 
and the analyticity of the resulting terms investi­
gated. We wish to show that the same cut-plane 
analyticity results. 

Since this is immediate in the second and third 
terms on the right of (1), we just investigate the 
first term. We do not discuss the problem of con­
vergence of the integral, but leave this to be made 
more precise when we consider the continuation 
problem in more detail in a later paper. We use the 
technique of distortion of the integration contourll 

to avoid pinches or end-point singularities as the 
external energy variables are moved about in their 
complex planes. The initial singularities in the ko-
plane for the quantity 

are given in Fig. 1. We remark here that, in order 
to distort the contour of integration away from 
moving poles, we must assume that the amplitude 
on the right-hand side of (3) is evaluated from above 
the cuts for positive energy and below the cuts for 
negative energy, exactly as if m2 is replaced by 
m2 

- it: everywhere, as in the Feynman convention. 
We now allow Po and any number of the P.o 

(i = 1, '" , n) to wander around in their complex 
planes. The singUlarities of the integral can arise 
from pinches of the contour of integration. For the 
pole singularities, these can be seen to arise when 
one or more of the following situations arises: 

11 R. J. Eden in Brandeis Summer Institute in Theoretical 
Physics, 1962 (W. A. Benjamin Company, Inc., New York, 
1962). 

(i) [It' + m2)l = po - [(P - kl + ml]\, 

-PIa - [(PI + k)2 + m2]i, 

or Po + PIO - [(p - k + PI)I + m2]t, 

(ii) Po + [(P - k)2 + m21i = - [k2 + m21i, 

-pIa - [(PI + k)2 + m2Ji, 
or Po + PIO - [(P - k + PI)2 + m21t, 

(iii) -PIa + [(PI + k)2 + m2]! = - [k2 + m2)i, 

Po - [(p - k)2 + m21l, 

Po + pJO - (p - k + pJ)2 + m1t, 

or -PJO - [(PJ + k)2 + m2Ji, 

(iv) Po + PIa + [(p + PI - k)2 + m2]l, 

-[It' + m2]1, 

po - (P - k)2 + m2]!, 

-PJO - [(PJ + k)2 + mlJi, 

or Po + PJO - [(P + PJ - k)2 + m2]t. 

One of these will happen provided that a subset I 
of the interval (0, I, ... , n) has PIa = EiEI PiO 

with PIO real, IpIol ;::: [p~ + 4m2)!. Exactly the same 
set of conditions arises if pinches occur due to the 
wandering of the branch points. Further singularities 
arise, independently of the integration, from poles 
and branch points in the fixed external variables. 
When all these singularities are put together, we 
obtain exactly the set of singularities specified by 
the theorem. 

We may now perform the analytic continutation 
of our mapping T. As we continue in our external 
variables P;o -7 ip;o in an anticlockwise direction, 
we may rotate the internal ko integration contour 
at the same time and in the same direction without 
crossing any of the singularities. After a 90 0 rotation 
the singularities in the ko-plane are now displaced, 
and in fact lie outside a band around the imaginary 
ko axis of width 2m, as shown in Fig. 2. We have 
thus removed the principal-value singularities, and 
achieved our continuation to the Euclidean region. 

We define the set of points x in E whose com­
ponents have the analyticity in energy described 
in Theorem 1 to be energy-analytic. Then our 
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a. 

FIG. 2. The position of singularities in the ko plane arising in 
the integrand of Eq. (3) after rotation of the external energy 
variables through 90 0 in their complex planes. 

previous discussion has proved, to within contribu­
tions from infinity, the following theorem. 

Theorem 2: A necessary condition that the map­
ping T defined by (2) has a fixed point in the set 
of energy-analytic elements is that the corresponding 
Euclidean mapping T has a fixed point. 

The theorem extends immediately to the case of 
an interaction £r = L y"cp", following the remarks 
after the proof of Theorem 1. 

It would be nice if the existence of a fixed point 
for T was also a sufficient condition for the existence 
of a fixed point of T; this is a very difficult question 
which we are not yet in a position to discuss. One 
of the problems in discussing it is in the contribu­
tions from infinity which may arise during the 
analytic continuation of T to T. We cannot attempt 
to discuss these contributions without going into 
a full discussion of the reverse continuation from 
the Euclidean to the Lorentz metric. We will do 
this in a later paper. 

We note that the position of the threshold is not 
important for achieving the Wick rotation (provided 
it is not zero). Thus the Wick rotation can be done 
for either the unrenormalized equations (1) or for 
the renormalized equations that we will write down 
later [Eqs. (12)]. There will in fact be a mass shift 
in the unrenormalized equations so that the thresh­
olds do not involve m (the bare mass) but the 
renormalized mass m •. The energy analytic functions 
entering Theorems 1 and 2 for the renormalized field 
equations will naturally have their thresholds in-

volving m.. Since here we will not be using the 
particular space of analytic functions on which T 
is defined, except to enable the Wick rotation to 
be done, we need not concern ourselves further with 
the question of thresholds. 

We assume in the remainder of this paper that 
we are working in the Euclidean region, and that 
we consider the mapping T. The main reason for 
doing this is to ascertain which methods will apply 
to prove the existence of a fixed point for T; the 
problem for T is harder, but our understanding 
gained in our discussion of T should help us when 
we finally face up to T. 

4. THE CONTRACTION MAPPING 

We now wish to apply the contraction mapping 
theorem12 to T. To do this we need to introduce 
a norm on E. We will attempt to do this in a number 
of stages; we will start by trying to gain an idea 
of the type of norm useful in considering an approxi­
mation to T, and then attempting to remove the 
approximation. Before we do this we will discuss 
the reality properties of T. On performing the 
analytic continuation, we see that each internal line 
gives i[p~ + p2 + m2r 1 and each internal integration 
gives an extra i. Thus in the Euclidean region (1) 
becomes 

0·" 
'2 D) . -. + t:D \'\ - -to (-) tn, I 

(4) 

where now each line denotes [p~ + p2 + m2rl. If 

. ,~~. 
we mtroduce n = 1. V\ then O 0

, 

0= <0n+~)h 
-+-'=( 02.r'== -<0' + (-f' (\,\=1). 

(4') 

Thus (4') becomes a real mapping, so we may search 
for solutions of (4') when the function spaces En 
are composed of real functions only. 

12 Ref. 7, p. 141. 
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The same result follows for an interaction n 
Lagrangian £1 = g,pN for N = 4, 5, etc. The Green's 0 = [ I - ,:f TT( p~ ~-I [ 2 ~ +:2 <::( ] 
functions equations in the general case are 

(5) 

where the summation in (5) is over all sets of 
integers (tl' ... , t".), (rl' ... , r m) so that L: t; = N, 
L: r; = n, and then over all possible m. The vertex 
denotes g. In Euclidean space the general term in 
(5) has an extra factor i N + 1:(1,-1), and if we define 

O h+'OJ as before n = in, then the general 

term in the mapping for 0'", has a factor i4Nh, 

and we obtain the real equation 

(5') 

Thus, we restrict ourselves to considering the 
mapping '1' on a product of real function spaces. 

We now turn to approximating our mappings. 
The approximation we will use is to cut off the 
equations in (1) for large enough n. That is we will 

take Om = 0 if m > N on the right-hand 

side of (1) for n > N, and rearrange the resulting 
equations suitably to relate only the set of functions 

Let us consider as a first approximation, the case 
N = 3, but even further approximate by taking 

the complete propagator -0-- to be the 

free propagator (-). Then (1) becomes, in the 
Euclidean metric, 

(6) 

where II (P2) = J d2kW - m2rl[(p - k)2 + m2rl. 
II (p2) vanishes as p2 ~ CD and we choose l < 
[max.,' II (p2)rl = g~. Equation (6) is a linear 
integral equation, but we are interested in applying 
the contraction mapping theorem. Evidently, if 

03 is uniformly bounded in its external var­

iables, it will preserve this property on the left-hand 
side of (6). If we denote this left-hand side by 

5 r 03 ), then for sup/Ma(PIP2Pa) I < A, 

where Ma = 0'3, then 

sup /S(Ma)/ < (1 - l/g~)-1(2g + 2laA), (7) 

where a = sup 1.11, .1 being the triangle function 

.1 = .1(Jh, P2, Pa) = J d2 k[k2 + m
2r l 

X [(PI - k)2 + mrl[(p2 + k)2 + m2rl. 

In 2-dimensional space-time, a is finite. Further, 

sup IS(M~) - S(Ma) I 
< 2(1 - g2/g~)-la sup IM~ - Mal. (8) 

If we now take Ea to be the real Banach space of 
uniformly bounded real functions of three 2-vector 
momenta PI, P2, Pa (satisfying PI + P2 + Pa = 0), 
with norm 

the supremum taken over all PI, P2, Pa with PI + 
P2 + Pa = 0, then (7) and (8) show that S is a 
contraction mapping on Ea which maps the closed 
ball BA = [Ma : I/Ma/l S AJ into itself provided 
2al < 1 - g2/g~ and 2g + 2ag2A S A(l _ g2/g~). 
Thusifl < (2a+g;2)-1 =g! and A ~ 2g(l-g2/g!)-1 
there will exist a unique solution in the ball B A. 

We have thus proved that Eq. (6) has a unique 
solution in the Banach space Ea, provided g < g •• 
This solution is that obtained by iteration from 
any initial trial function on E 2 , and, in particular, 
it is the convergent perturbation expansion of (6). 
In fact, we have, in the contraction mapping 
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theorem, a very effective tool for proving conver­
gence of the perturbation expansion of our field 
equations. 

Let us now consider the higher approximations 
to (1). We make the Nth approximation as follows. 
We define the mapping T(N) to be obtained by 
applying T to the vector X(N) where X~N) = O(i > N). 
We may thus regard X(N) as a vector in the subspace 
E(N) = II2,., .. ,.,N En X {OJ of E, whose elements have 
their components beyond the Nth all zero. We then 
consider the first N components of T(N) (X(N» to be 
the components of T(N). Thus if p (N) is the projection 
from E onto E(N), T(N) = P (N) Tp (N) . We wish to 
prove the existence of a fixed point of T(N) in E(N), 

for each N. 
Again, we let En be composed of bounded func­

tions and given the uniformly bounded topology 
for n > 2, while for E2 we take functions M2(P) 
for which (p2 + m2)-lM2(P) is bounded with cor­
responding norm IIM211 = sup (p2 + m2)-lm2M2(p). 
We impose on E(N) the product T .. of the normed 
topologies on each E,,(2 5 n 5 N), so T .. is a normed 
topology. The norm on B(N) may be taken as 

IIX(N)II = sup IIX~N)II. 
l~nSN 

We now determine if T(N) is a contraction mapping. 
We have 

T~!~(X(N» = 

«)n + is)n 
(1') 

so 

.. -I 

+ gm-
4 L nC.[IIX!!UIIIX~~~+1 - y~~~+111 

• -1 

(9) 

In (9) the factor nc. has arisen from the symmetriza­
tion of the external momenta in "Cr ways for each 
division of n into rand n - r momenta. If we now 
consider only elements x(N), yeN) in the ball BA 
[X(N); IIx(N) /I 5 A] we have 

IIT(N) (X(N» _ feN) (y(N» \I 

~ (gg;2 + 2gm-4Asup E nCr) IIX(N) _ y(N)11 
,.'S,N r-l 

~ (g;2 + 2N Am -4)g IIX(N) _ yIN) II. (10) 

Further T(N) (B A) C B A if 

gg;2A + 2
N
gm-

4
A

2 5 A,}, (11) 

gg"(;2A + m-2 5 A, 

where the second equation in (11) comes from n = 1 
in (1'). We thus have the conditions of the contrac­
tion mapping theorem satisfied if (11) is satisfied; 
The curves of (11) in the (U, A) plane are drawn 
in Fig. 3; we see that for any N there is a region 
in which both equations (11) are satisfied, for 
suitably small u. We notice that the uniqueness and 
existence for each U below the critical value U. only 
holds for a suitable small B A, and does not extend 
to the whole of B(N); this is characteristic of non­
linear mappings, when tackled in this manner. We 
have thus proved the following theorem. 

Theorem 3: For each value of N, the approximate 
Euclidean field equation 

T(N)(X) = X (2") 

has a unique solution in some bounded region, in 
E(N), for an interval of values of the coupling con­
stant U about the origin. 

We note that our discussion of Eqs. (10) and (11) 
assumed U to be positive. If it is negative our previous 
discussion can go through with U replaced by lui. 

We may extend Theorem 3 to any nonlinear 
interaction in 2-dimensional space-time with no 
difficulty. The method is so similar that we do not 
give it here, but simply state the following. 

Theorem 3': For each value of N, the approximate 
Euclidean field equation 

T(N) (X) = X 

derived from the interaction Lagrangian £( = 
L: g,.¢n in 2-dimensional space-time has a unique 
solution in some bounded region in E(N) for values 
of the coupling constants Un contained in a set of 
nonzero intervals, each containing the origin . 

We now are faced with two problems: 

(a) Can we extend the existence theorem to larger 
values of g, for a given N? 

(b) Does the interval for g converge to zero as 
N-+oo? 

These problems are evidently related; the answer 
to the second is that it does, from our conditions 
(11); the maximum value of g goes to zero when 
N -+ 00 as 4m4/(Ng~). We may try to alleviate this 
difficulty by numerous methods: change the topology 
on E(N), on En, change B A, change T(N), and so on. 
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Let us first keep T and T(N) and change the 
topologies. It seems that changing topologies on 
each E" will not remove the troublesome factor 2N+l 

in (10) and (11). What we need to do is to change 
the topology on E(N) • This can be done by choosing 
the norm on E(N) to be Ilx(N)1I = SUP1SnSN IIA;;-IX~N)II, 
where An are a suitable set of constants, depending 
on n in some way so that the contraction mapping 
principle will apply. With the new norm, conditions 
(10) and (11) for the contraction mapping theorem 
to apply are now 

(10') 

gg;2A3 A + m-2 ::; A2A, (11') 

for n ::; N. To answer question (b) above in the nega­
tive, we have to be able to satisfy (10') and (11') for 
all n and some nonzero g by a suitable choice of 
the sequence {A, \. But such a choice is not possible, 
as we see from the fact that, from (10'), A" + 1 > 
aA"u > ... > a rAn +l+r, where a = gg;;2. Thus, we 
have the summation term in (10'), (11'), 
.-1 .-1 

1: Ar +1A,,-H/,Cr > a"A!+1 1: "C. > a"2n-2A~+I' 
r-l r-l 

(11") 

FIG. 3. The shaded 
region is the set of values 
of g and A satisfying Eqs. 
(10') and (11'). 

Again, from (10') and (11'), we need A,,+1 < c(2a)-" 
for c = 2m4j(gA). But we also need from (10'), 
c1A,,(n - 1) < A"+I, C1 = 2gm-4AA2. These con­
ditions An+l < O[(2a)-"] and An+! > Oren - I)!] 
are evidently incompatible for large n, unless g = O. 
Thus, no possible choice of product topology will 
enable us to prove the existence of a solution to 
(2") for an arbitrarily large N. 

We find this same problem however we change 
the topology on each En, at least for any of the Lp 
norms (1 ::; P 5 <XI). It is always the summation 
term on the right-hand side of (10') which causes 
trouble. This is the same thing as saying that there 
are too many new graphs at each step of iteration in 
perturbation theory. That we cannot hope to prove 
the conditions of the contraction mapping principle 
are satisfied for arbitrarily large N follows from 
Jaffe,13 who states that the perturbation expansion 
of our equations (1) is divergent, and the radius 
of convergence in g of the perturbation series 
is zero. For if we had been able to apply the con­
traction mapping principle, by obtaining a solution 
to (10') and (11'), we would have been able to 
obtain a solution to (1) which would have been 
the perturbation expansion. To see how such a 
solution would have arisen, we remark that, if we 

13 A. Jaffe, Commun. Math. Phys. 1, 127 (1965). 
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take for E" the space Cn of continuous bounded 
functions in the topology of uniform convergence 
(with suitable modifications for E 2 ), then it would 
be possible, by the contraction mapping theorem, 
to prove the existence of a unique solution of 
T(N)(X(N» = X(N) in a compact K(N) = IIlsnsN K". 

Here, each K" is is composed of uniformly bounded 
(by AnA), equicontinuous functions vanishing uni­
formly at infinity (except for K a, which would be 
the convex hull of such a compact in Ca and the 
constant function g). But then K = limN ..... K(Nl 
is compact in C = II Cn in the product topology, 
so the solutions have a convergent subsequence, 
converging to a point Xo of K; such a point would 
be a solution of the complete field equation (2). 
Xo would also be obtained as the limit of the perturba­
tion series X(N), so proving the convergence of 
perturbation theory. 

Jaffe's discussion was given for unrenormalized 
perturbation theory. We still have a chance of 
proving the convergence of perturbation theory for 
the renormalized equations. We turn to this in the 
next section. 

5. THE RENORMALIZED EQUATIONS 

Weare still working in 2-dimensional space-time, 
so that the renormalization procedure is just a 
reshuffling of the mapping T. As discussed in Ref. 
5, the renormalized equations are 

On=~o:r;J! + 08)-· 
C])n = On - CX)n , 

I 

Gin = C1( - 'I, C)f::IV - CJt8)n. 
0= 3 +~,{):rD ' 

I ::z 

I-t-I-'=C-f' + ~CJ:D -\arII:1). 
(12) 

In (12) the functions 0 n are completely am­

putated with respect to their external complete 
propagators. We can deal with (12) most con­
veniently if we replace the square root of the 
complete propagators in each diagram so that (12) 

now reads, in terms of partially amputated functions, 

O rr Yo:t-11:1 ~ 
=.j (-+-) (-) +11:l.~, 

". 
-t- =(-)(I-~2.OD+'/Itcn]):D), 

Il-

(13) 

where the functions in (13) are related to those 
in (12) by 

O r. 'I;). 0 n II~ • 
nlf-) in(13)= nTlf-l--) In (I-:l). 

In the Euclidean metric, (12) is a real mapping; 
(13) need not be, due to the indefiniteness of (+ )i. 
However, this need not disturb us in our application 
of the contraction mapping theorem. Equation (13) 
is a mapping R on the space E = II" E", where 
En+2 is a space of triples of functions 

( 01'\ +") C{)n ) (})\'\) for n ~ 2, 
, I 1. . 

Ea = (0'3 J and E2 = {+I· 

Then the solution of (13) satisfied 

R(X) = x. (13') 

We consider the corresponding Euclidean map­
ping R, and the approximating mapping R(Nl = 

p(N) RP(N). Let us consider the case N = 2, with 
(-) = (+). The equation is 

o = 3 + <J8. (14) 

When g = 0 this equation may be regarded as the 
basis of off-the-mass-shell bootstrap equations 
(where our discussion will even go through for this 
equation in four dimensions due to the absence of 
divergences). If we apply the same considerations 
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to (14) as we did to (6), then (14) satisfies the con­
traction mapping theorem provided 

(15) 

where a is the same constant as introduced in (7). 
Equation (15) will be satisfied provided g < 2/3 (3a) l, 
and a suitable A < (3a) -, may then be chosen to 
satisfy (15). We have thus proved that, for suitably 
small g, Eq. (14) has a unique solution equal to 
the convergent perturbation expansion; if g = 0 
the only solution of the equation in the ball B A = 
[Ma : IIMall < (3a)-'] is the trivial vanishing solu­
tion. While this does not prove this to be the only 
solution, it does give an indication to this effect. 

A similar theorem to Theorem 3 may be proved 
by exactly the same method for the mapping k(N). 

We do not go into the details here, since they are 
so similar; we see immediately that such a result 
will have the same difficulties as was met in the 
previous section when we attempt to let N ---? ex>. 

This arises from the last term on the right-hand 
side of (13), which has the same increasing number 
of terms when n increases, as does the second term on 
the right-hand side of (1). As in the last section, we 
cannot avoid this problem by suitably changing 
topologies. 

Our existence and uniqueness theorem for keN) 

show that no bootstrap system is possible, at least 
in a certain bounded region of E (N) .14 

By bootstrap we mean the set of equations ob­
tained by requiring there to be no local interaction 
for the bootstrapped particle to itself or other par­
ticles, so g = 0 for such a system. One can take a 
less stringent bootstrap with g ~ 0, but the wave­
function renormalization constant Z of the particle 

14 A similar result for R4 has been proved by a very different 
approach by M. Broido (private communication). 

being strapped set equal to zero. We do not have 
anything to say yet on the resulting system of 
equations. 

6. CONCLUSIONS 

We have seen in the preceeding sections that we 
may prove the existence and uniqueness of solutions 
to approximated field equations, for any order of 
approximation, by analytic methods. These methods 
are not strong enough to prove even the existence 
of solutions to the complete set of field equations. 
This result is rather disturbing, since the particular 
equations we have been discussing [except possibly 
for (14) in four dimensions] are far from the realistic 
cases, such as quantum electrodynamics. We have 
to develop methods for solving the existence problem 
which work, not only for our complete set of field 
equations (1) in two dimensions in the Euclidean 
metric, but also work when we analytically con­
tinue back to the Lorentz metric, and also include 
high-energy divergences. This we will start to do 
in the next paper of this series, where we also try 
to extend Theorem 3 so that a solution exists for 
all values of the coupling constant. 

Evidently, as far as our existence program is con­
cerned, the results of this paper are negative. It 
shows that the direct analytic approach is a blind 
alley. However, our existence and uniqueness re­
sults for Eq. (14) in four dimensions will be of 
value in off-the-mass-shell bootstrap and resonance 
approximation discussion.16 It is exactly this equa­
tion (14) that arises in the resonance approximation 
and it is encouraging to learn that this equation ha~ 
a unique solution for at least some values of g. 

15.J. 9,. .Taylor, "qomposite, Elementary, and Resonance 
PartIcles III Proceed~ng8 of the International Conference on 
EleTftentary p'articles, Sienna, September, 1963 (Italian Physical 
SOCIety Publishers, Bologna, 1964). 
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The Structure of 4-Spinors 
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The possible underlying spinor spaces used in the description of Dirac 4-spinors are enumerated 
and classified within the framework of vector Clifford algebra. The relation with the usual matrix 
formulation is reviewed. Proper Lorentz transformation, space and time inversions are described in 
the Clifford algebra formalism. A representation-independent definition of charge sign conjugation is 
given. 

I. INTRODUCTION 

RECENTLy/·2 in an effort to describe fermion 
and boson one-particle fields from a unified 

viewpoint, we have reviewed, and in certain ways, 
extended Riesz's approach3

-
6 to the description of 

fields by means of aggregates belonging to the Clif­
ford algebra C 16 generated with the basis vectors 
of Lorentz space-time L 4• This algebra has sixteen 
basis elements eA

; namely, a scalar unit, 1; four 
vector units i; six bivector units e~el' == iI', (A < [.L); 
four trivector units eX", == ie"e', (A < [.L < v); and 
the pseudoscalar unit e0123 == eOe1e2e3• Here A, [.L, " = 
0, 1, 2, 3; the ascending order of indices has been 
chosen for specificity, and the algebra is defined by 
the anticommutation relations 

([.L, " = 0, 1, 2, 3). (1.1) 

Here, [g""j is the Lorentz metric which we choose 
with diagonal elements (1, -1, -1, -1) and van­
ishing nondiagonal elements. The products and com­
mutation rules of the eA derived using Eq. (1.1) are 
given in Table r. 

As a means of unification in I, we considered 
various solutions to the Dirac-like equation 

(1.2) 

where K = me/Ii, and if; is a Clifford aggregate or 
linear combination of Clifford basis elements. For 
example, 

3 

Kep. = Kep + i L 'Pl'e" ,,-0 
(1.3) 

1 S. Teitler, Nuovo Cimento Suppl. 3, 1 (1965), referred to 
as!. 

IS. Teitler, Nuovo Cimento Suppl. 3, 15 (1965). 
a M. Riesz in Camptes Rendus du Dixieme Congres des 

Mathematiques des PaYIl Scandanaves (Copenhagen, 1946), pp. 
123 ff. 

t M. Riesz in Comptes Rendus du Dousieme Congrell des 
Mathematiques des Pays Scandanaves (Lund, 1953)1 pp. 241 ff. 

t M. Riesz in Lecture Series No. 58 (University 01 Maryland, 
1958), Chaps. I-IV. 

corresponds to a scalar field, and the Proca field is 
made up of a linear combination of vector and 
bivector components. Further, following Riesz,3 

Sommerfeld,6 and Sauter7 we generalized the usual 
Dirac column 4-spinor by identifying it with an 
element of a left-minimal ideal. 

As may be recalled, a left ideal a L in an algebra 
C is a set of elements such that if a E aL , b E aL , 

then (a + b) E aL , and if a E aL and c E C, then 
ca E aL • A right ideal is defined similarly except 
that fIR :3 ac. A left-(right-) minimal idealis a left 
(right) ideal which contains no other ideal but it­
self and the null ideal. 

As has been discussed before1
•
3 and as is shown 

more fully below, minimal ideals may be generated 
by using a primitive Clifford aggregate 7r such that, 
for any Clifford aggregate C, 7rC7r = t7r, where t is a 
scalar. For C16, a certain class of four-component 
idempotents are primitive aggregates and may be 
used to generate other primitive aggregates. The 
relationship among primitive idempotents, other 
primitive aggregates, and minimal ideals of C16 are 
discussed in detail in Sec. II. There, the possible 
minimal ideals which correspond to 4-spinor spaces 
are enumerated and classified. 

In Sec. III, we discuss the matrix representation 
for left- and right-minimal ideals and make some 
observations concerning the types of minimal-ideal 
basis. In Sec. IV we consider homogeneous Lorentz 
transformations, space and time inversions, and 
charge sign conjugation of the minimal-ideal basis. 

II. IDEMPOTENTS, PRIMITIVE AGGREGATES, 
AND MINIMAL IDEALS 

We consider idempotents made up of elements of 
equal weight, i.e., all of whose elements have square 
± 1. Clearly there is only one one-component idem­
potent and that is the scalar unit, 1. In contrast 

8 A. Sommerfeld, Atombau und Spektrallinien (Braun­
schweig, 1939), Vol. II, pp. 217-268. 

7 F. Sauter, Z. Physik 63, 803 (1930); ibid. 64, 295 (1930). 

1730 
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we may form two-component idempotents by an 
appropriate linear combination of the scalar unit 
and any other basis element of the Clifford algebra. 
Thus, we have (!)(1 ± eO), (!)(1 ± ie

1
), ••• , 

(!)(1 ± e123
), (!)(1 ± ie0

123
). Clearly the two­

component idempotents are not primitive aggregates 
since, as is readily seen from the multiplication 
table, every basis element of the Clifford algebra 
commutes with six other elements in addition to 
itself and the scalar unit. 

We turn next to four-component idempotents of 
the form 

Here, 

1/i = ±1, ±i, (2.2) 

where the eA 
I may be any of the Clifford basis 

elements [the 1/, are chosen so that (e A1
)2 = ±1] 

and Nt is a normalization scalar constant which is 

TABLE I. The products and commutation rules for the basis elements of the vector Clifford algebra generated 
from the basis vectors of Lorentz space-time. The product of an element at the side (on the left) multiplying 
an element at the top is given in the box common to their respective row and column. The ± sign in the top 

right corner of each box indicates whether the product is commutative ( + ) or anticommutative ( - ). 

+ + + + + + + .. 
eO e' e' eS e01 e02 

+ + 

eO e01 eO' e OS e' e' 

.. + + 

e1 -1 eU eO _eOlJ _eelS _ea 

+ + + + 

e' _eoa _e12 -1, aO _eoaa e' 

.. + + + 

_eOS _aU 

.. + + .. 
e01 _e ' 

-eO _eU _e02 

+ + + + 

-e l -e0U _eO -1 _e23 

.. + + + 

e" _eS _e01l -e0U _eO eU 1 

+ + + + 

e12 e" _e' 

+' + + + 

e U eS -eS eOil _e01JS _e01 

-+ + + + 

e" -el eOO -e" 

+ + + + + 

-e
01 ea _e' 

eO 

+ + + + + + 

e13 _eOlU -01 -e e" 

+ + + + + + 

e"" -e" 

+ + + + 

-e0la _e21 _ell 

+ + -+ + 

_eOl 

+ 

.. 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+-

-e' 

e l 

-e" 
+ 

_eo1as .:e0l 

e01 

+ 

-1 

+ 

.. 

.. 

+ 

+ 

01 -e 

_eOllS 

a l 

_e
' 

eO" 

e- -eO" -1 

+ 

-eO -e" 
+ 

_eoa, _eo 

+ + 

e" _e1 

-+ + 

+ 

+ 

+ 

+ 

-e01 

+ 

eS 

+ 

_e' 

+ 

+ 

-1 

+ + + 

.. + 

.. + 

+ + 

_eOlJ 

+ + .. 
eOIl 

+ + 

+ + 

eS 

+ + + 

_eO _e013 

+ + 

_eelS -e" 
+ + + 

e" 

'+ + 

_eO -e
1 

-eO 

+ --
e" 

+ 

-1 _e01 _e1 

+ 

e01 1 -eO 

+ 

-1 
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real and positive definite. We then have 

(E4)2 = N{[1 + (eA.)2 + (eA.)2 + (eA.)2] 

+ 2[eA• + eA. + eA.] 

+ [eA'c;A. + C;A'C;A.] 

+ [eA. eA. + eA'eA.] 

+ [eA·eA• + eAaeA.]) 

= Ni{1 + eA. + eA. + eA'). 

From the scalar term it follows that 

(2.3) 

N-i = 1 + (eA.)2 + (eA.y + (eA.) 2. (2.4) 

Hence either the (eAI )2, (j = 1, 2, 3) are all equal 
to (+ 1) or at most one is equal to (-1). Then N-i 
is either equal to (a)4 or (b)2. Case (a) follows if 
eA'eAI(i, j = 1, 2, 3; i ~ j) commute and belong 
to an algebra such that eA'eAI = eAleA' = eA. , 
(i ~ j ~ k). Clearly then, case (a) corresponds to 
products of commuting two-component idempotents. 
The condition of case (b) implies eA'f/l(i, j = 
1, 2, 3; i ~ j) anticommute in order to ensure the 
validity of (2.3). In this case the eAI may form a 
noncommutative algebra, i.e., the E4 may consist 
of products of two-component idempotents whose 
nonscalar units anticommute. However, case (b) may 
also be satisfied by any three anticommuting unit 
eA 

I not belonging to a mutually closed algebra 
(with the scalar unit), but such that only one of 
the eAI has square (-1). 

We show now that idempotents of type (a) are 
primitive whereas idempotents of type (b) are not. 
An idempotent of type (a) may be written in the 
form 

We sayan element is interior if it is one of 
1, eA., eA', eA., and it is exterior if it is proportional 
with square ± 1 to a basis element of the Clifford 
algebra independent of the interior elements. Now, 
suppose we consider an aggregate C = eA. where 
eA. is any 1/e

A. Then, because of the distributivity 
of multiplication, E4 • is primitive if 

(2.6) 

for all independent eA. where t is a scalar. Clearly 
if eA. is proportional to any of the interior elements, 
Eq. (2.6) is valid with nonvanishing t. If SA. is not 
proportional to an interior element, then from the 

multiplication table it anticommutes with either 
eA. or eA', or both. Then Eq. (2.6) is valid since 
t vanishes for all eA. which are exterior. This covers 
all cases so that idempotents of type (a) are primi­
tive. 

We consider the idempotents of type (b) in the 
two subtypes discussed above, i.e., (bl): 1, SA., SA" 
eA. form a sub algebra in which eA" eA., eA, all 
anticommute and only one of the eAI(j = 1, 2, 3) 
has square -1; (b2): again all SAl anticommute 
and only one has square (-1) but they do not form 
an algebra with the scalar unit. 

We turn first to subtype (bl). It is readily shown 
that if eA. is exterior it must commute with at least 
one of the eAI(j = 1, 2, 3), may commute with all 
three but not only two of them. Thus, it is clear that 
idempotents of type (bl) are not primitive for all 
exterior eA. and therefore not primitive. 

To show subtype (b2) is not primitive, we note 
the sA'eA'eA, must be exterior and it commutes 
with all three eAI, (j = 1, 2, 3). Hence idempotents 
of subtype (b2) cannot be primitive. 

Now that we have established that idempotents 
of type (a) (hereafter designated by E 4 ) are primitive 
we should like to know how to generate other primi­
tive aggregates from them. Clearly, any aggregate 
proportional to E4 is also primitive. In particular, 
multiplication of E4 by a scalar factor of magnitude 
1 but not equal to 1 generates a primitive aggregate 
that we designate a pseudo-idempotent. 

Now, we note from the multiplication table that 
any exterior element eA. anticommutes with at 
least one of the nonscalar interior elements. How­
ever, it is readily shown that, if it anticommutes with 
one nonscalar interior element, it must anticommute 
with two but not all three nonscalar elements. Thus 
there are three distinct classes of exterior elements, 
i.e., 

SC. commutes with eA. 
and anticommutes with SA, and SA., 

eC
' commutes with eA

, 

and anticommutes with eA. and eA., 

eC
' commutes with SA. 

and anticommutes with eA. and eA
'. (2.7) 

The following three lemmas are obtained m a 
straightforward manner. 

Lemma 1: Two exterior elements are in the same 
exterior class if and only if their product is propor­
tional to an interior element. 
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Lemma 2: If two elements belong to two different 
exterior classes, their product belongs to the third 
exterior class. 

Lemma 3: The product of an exterior element and 
an interior element belongs to the same class as the 
exterior element. 

From Lemma 3 and the multiplication properties 
of the elements (Table I), it follows that there are 

= 0, 

Note that from Eqs. (2.7), E~ is a primitive idem­
potent if E4 is a primitive idempotent. Also, it 
should be noted from Lemmas 1 and 3 that the 
oriented product of any SAl and a primitive idem­
potent is proportional to the similarly oriented 
product of another SA. in the same class and the 
same primitive idempotent. 

Thus, the primitive idempotent (or any scalar 
mutiple thereof) may be used to generate a complete 
"orthogonal" set of primitive aggregates by forming 
the products of an element from each exterior class 
and the primitive idempotent. These primitive ag­
gregates, along with the idempotent itself, are com­
plete in the sense that every SA I has a nonvanishing 
t for at least one of them, and they are orthogonal 
in that SA I has a nonvanishing t for only one of them. 
There are several possible such sets for each interior 
class. Thus we recall that there are four idempotents 
for each interior class, i.e., (1 ± SA')(I ± SAS). Sup­
pose we choose one and label it E:. We then label 
E!, E:, E~ such that 

E:SC" = SC"E:, 

E:SC's = SC'sEL 

E:Sc , = SC"E!, 

E!SC" = SC"E:, 

E~eC's = eCaE:, 

E!eC' , = eC"E:, 

(2.9) 

where the relations among the E: are then deter­
mined by (2.7). For example, if E: = HI + SA, + 
SAs + SA,), then 

E: = HI + eA' - SAo - SA,), 

E: = HI - SA, + SAo - SA,), 

E~ = HI - SA, - eA. + SA.). 

Clearly E:E: = E: and E:E: = 0, (y ~ z; y, z 
a, b, c, d). Also it is clear that all E~ are primitive 
and all products of exterior elements with any of 
these idempotents are primitive obeying Eq. (2.8). 

at least four elements in each class. Since the exterior 
classes are mutually exclusive by Lemmas 1 and 2, 
it follows that the twelve exterior elements are 
equally divided among the three classes. 

We now observe that the product of an element 
of an exterior class and a primitive idempotent (or 
pseudo-idempotent) is a primitive aggregate. This 
follows immediately from Lemmas 1 and 2, because 
if C = SA" then 

otherwise. 

A complete orthogonal primitive set can thus be 
formed by choosing any idempotent (or any scalar 
multiple thereof) and products of an element from 
each exterior class and any idempotent of the interior 
class. 

Among these complete, orthogonal, primitive sets 
there is a class which may be used as a basis for an 
ideal. These are clearly only those for which the 
oriented product of any arbitrary elements of the 
Clifford algebra and a member of the primitive set 
written in the form of products of the same orienta­
tion yield again the same primitive set up to a scalar 
factor. This can only occur if the primitive set is 
made up of an idempotent and products of elements 
from the three exterior classes and the same idem­
potent. 

Consider for specificity the set of left, normalized 
primitive aggregates 

where normalized means lo is an idempotent (pseudo­
idempotent) and the tp,. are real. Then it is clear that 

(i = 1,2,3). 

Now consider the linear combination 

~I = cxolo + cxlll + cx2l2 + cxala, (2.10) 

where for simplicity we have absorbed the phase 
factors into the coefficients CXpo We multiply from 
the left by a general aggregate C of the entire Clif­
ford algebra. It is clear from Lemmas 1, 2, and 3 that 
C~I is just another linear combination of the same 
form as gl. Thus the l,.'s form a basis for a left ideal. 

It follows that such an ideal contains no other 
ideal (other than null ideal). For suppose there was 
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TA.BLE II. The fifteen interior classes of the vector 
Clifford algebra generated from the basis vectors of 

Lorentz space-time. 

(1, eO iel2, ie°'") , 
A. ~1, eO iel3, ieOl3 ) , 

1, eO, ie28, ie(23) 

t ie1, ie23, el23 ) 
B. 1, ie1, e02, ie012 ) 

1, ie!, e03, ie013) 

(1, ie2, eoa ie023 ) 
C. (1, ie2, eOI ieOJ3) , 

( 1, ie2, iel3, el23 ) 

(1, ie', e01, ie013 ) 
D. (1, ie·, eO', ie023) 

(1, ie3, ie12, el23 ) 

(1, ie0123, eOI ie23 ) , 
E. (1, ie0123, e02 ie13 ) , 

(1, ie0123, eoa iel2 ) , 

a nonvanishing ideal whose basis could be made of 
nonindependent linear combinations of the I" so 
that there would be less than four basis elements. 
Multiply from the left by a Clifford aggregate pro­
portional to one of the l". This is nonvanishing only 
for a basis element containing lo and is proportional 
to li'" Hence the proposed combination basis ele­
ments do not arise in the same combinations when 
multiplied by an arbitrary aggregate and therefore 
are not an ideal basis. Thus the ideal basis formed 
from a class of complete, orthogonal, primitive sets 
is a minimal ideal basis. 

From Table I (the commutation properties of the 
eA

), we see that any nonscalar element and the scalar 
element form a commuting algebra with just three 
pairs of nonscalar elements, each pair of which anti­
commutes with any element of any other pair. This 
provides fifteen different commuting algebras or 
interior classes. We then see a beginning of structure 
to the minimal ideals. There are fifteen interior 
classes from each of which we may form four idem­
potents. Each of these, up to factors of proportion­
ality, determines a minimal-ideal basis. This follows 
since the exterior classes are determined once an 
interior class is chosen. The interior classes are listed 
in Table II. The interior classes have been enumer­
ated in such a way to explicitly indicate that there 
are three classes containing the scalar, timelike 
vector, a bivector and a trivector basis elements; 
nine classes with the scalar, a spacelike vector, a 
bivector and a trivector basis elements; and finally 
three classes composed of the scalar, pseudoscalar, 
and two bivector basis elements. We discuss this 
grouping in connection with their corresponding 
representations in the next section. 

m. THE MATRIX REPRESENTATION 

We may use Riesz' prescription' to form the 
matrix representation of Clifford aggregates and 
the 4-spinor representation of elements of a minimal 
ideal. Thus, we write for the product of a general 
aggregate with a basis element of a left-minimal ideal 

Cl. = .L: c".I" (3.1) 

so that 

Coo COl 

(3.2) 

Caa 

For a minimal ideal of the form (2.10) we find 

giZ. = :E (~)".l" (3.3) 
" 

or 

an 0 0 0 

g'~ al 0 0 0 
(3.4) 

a2 0 0 0 

aa 0 0 0 

where for definiteness we have chosen scalar factors 
such that 

(lo)' = lo, ljlo = tj , loli = 0, 

(j = 1,2,3). (3.4a) 

Similarly for a right ideal with basis elements Tp , 

we may write 

(3.5) 

where again (el") has the form (3.2). We may write 
an element of a right-minimal ideal in the form 

fJr = f3oTo + f3lTl + f32T, + f3aTa, (3.6) 

where for definiteness we choose scalar factors such 
that 

(TO)2 = To, ToTi = Tj, TjTO = 0, 

(j = 1,2,3). (3.7a) 

Then 

130 131 13. f3a 

gr~ 0 0 0 0 
(3.7) 

0 0 0 0 

0 0 0 0 
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AB we have indicated in I, the choice of left-mini­
mal ideal basis which corresponds to the standard 
representation in matrix notation is given by 

l~a = HI - eO + ie12 _ ie°l2) , 

z;a = H _e1a + e013 + ie23 
_ ie°23

) , 
(3.8) 

l04 1( . 3 . 03 + 123 + e0123) 
2 = 4" -'I.e - 'I.e e , 

1;4 = H _ie1 
- ie°1 

- e
2 

_ e0
2
). 

The right-minimal ideal basis corresponding to 
the adjoint in the standard representation is ob­
tained (see, e.g., I) from the product oj eO and the 
conjugate reversion of the l;·. This has the form .. = -HI _ eO + ie12 _ ieOl2) , To 

r;a = _ He13 _ eOl3 + ie23 _ ie02S
), 

(3.9) 
r;a -Hii • 03 _ e123 + eOI23) , = -'I.e 

oa -Hie1 • 01 - i + e02) . Ts = -'I.e 

The exterior classes in this case may be delineated 
by 81S (Le., _e13 for left ideal and e1a for right ideal), 
83 (Le., -ies for left and +ies for right ideal), and 
81 (Le., -ie1 for left and +ie1 for right ideal). Note 
that the exterior class to which 81S belongs commutes 
with 8° but anticommutes with 812 and 8°12; 83 

commutes with 812 but anticommutes with 8°12 
and 8°; and 81 commutes with 8°12 but anticom­
mutes with 8° and 812

• 

Of course, equally valid forms for minimal-ideal 
bases can be obtained using any of the three 
other idempotents belonging to the interior class 
(1, eO, ie12, ieOI2 ). Indeed, it is interesting to note that 
the sixteen elements composing the four distinct 
minimal-ideal bases belonging to a given interior 
class are complete in the sense that linear combina­
tions may be used to describe a general Clifford 
aggregate. 

Clearly a similar discussion can be made for any 
of the fifteen interior classes. Thus, for a given 
Lorentz frame we have at least fifteen distinct ways 
(spaces), each of which is fourfold, of describing a 
4-spinor. In other words, given a Lorentz vector 
Clifford algebra, there are fifteen distinct four­
component commuting algebras each of which may 
be used to form four primitive idempotents. Indeed, 
as we have indicated above, the standard-type rep­
resentation corresponds to minimal ideals generated 
from an interior class containing the timelike vector 
basis element. In I, we showed that a Weyl-type 
representation corresponds to an interior class con­
taining the pseudo-scalar element. In a similar way, 
it is readily shown that a Majorana-type representa-

tion corresponds to an interior class containing a 
spacelike vector basis element, a bivector with mixed 
indices and a spacelike pseudo-vector. 

IV. HOMOGENEOUS LORENTZ TRANS­
FORMATIONS AND CHARGE CONJUGATION 

In this section, we are interested in the effect of 
homogeneous transformations of the space-time 
basis eP which are used as generators of the Clifford 
algebra. As indicated in I and shown by Riesz,6.8 the 
reflection of such a basis vector in a hyperplane 
normal to a real nonisotropic vector v may be ex­
pressed by 

(4.1) 

where nonisotropic means v has nonvanishing mag­
nitude. As a generalization of Hamilton's well-known 
decomposition of rotations in ordinary space into 
two successive reflections, it may be shown that any 
homogeneous Lorentz transformation can be written 
in the formS 

.' e (-l)'v;1 ... v~lePvl '" v. 
(4.2) 

== (-l)"V;lePV" 

where q ::; 4 and the v P are real nonisotropic vectors. 
Clearly q-even corresponds to proper transforma­
tions, whereas q-odd are improper. 

For proper Lorentz transformation of the vector 
basis, the effect on the general Clifford aggregate 
may be written 

C' = V- 1CV. (4.3) 

Here, V is most generally a member of the even sub­
algebra of the Clifford algebra consisting of a linear 
combination of scalar, all bivector and pseudo­
scalar terms. However, it is interesting to note that 
any proper Lorentz transformation can be expressed 
in terms of successive timelike (in general three) 
and spacelike rotations (in general three).\! 

A timelike rotation may be represented by 

l' = eO cosh X - e' sinh x, 

e1' = _eo sinh X + e' cosh x, (4.4) 

8 See also P. K. RaSevskir, Trans!. Amer. Math. Soc. 6, 1 
(1957), where reflections and rotations in Euclidean space 
are discussed. 

~ See, e.g., J. L. Synge, Relativity, The Special Theory 
(Interscience Publishers, Inc., New York, 1956), Chap. IV. 
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The V corresponding to (4.4) is 

Vt = cosh h - eO
l sinh h, 

V~l = cosh h + eO
l sinh h. 

As indicated in I, we may, using the invariance of 
the scalar part under permutation of the factors 

(4.5) (see, e.g., Riesz, Ref. 3), rewrite Eq. (4.9) in the 
form 

Note that V t and V~l are just reversions of one 
another and, since they are real, also conjugate 
reversions. 

A spacelike rotation may be represented by 

0' ° e = e , 

e l
' = et, 

e2
' = e2 cos 8 + e3 sin 8, 

e3
' = _e2 sin 8 + e3 cos 8. 

The corresponding V is given by 

V. = cos!8 - i 3 sin !8, 

V~l = cos!O + e23 sin !O. 

(4.6) 

(4.7) 

Again note V. and V~l are conjugate reversions of 
one another. 

The proper Lorentz transformation transforms a 
minimal ideal basis to the corresponding minimal 
ideal basis expressed in terms of the new space-time 
basis. Indeed, since all the basis elements of the 
Clifford algebra are transformed, even the matrix 
representation in the transformed basis system is 
unchanged. This is one way to view the usual matrix 
discussion (however, see below) which specifies that 
the 'Y matrices do not change under Lorentz trans­
formation. From that viewpoint the coefficients of 
the spinor, i.e., the coefficients multiplying the re­
spective basis elements of the minimal ideal, must 
be "transformed." That is, they must be re-expressed 
in terms of point coordinates in the new space-time 
basis rather than in terms of the point coordinates 
of the old set in which they remain under a Lorentz 
basis transformation considered here. 

However, the customary discussion of Lorentz 
transformations in Dirac theory is usually not so 
straightforward but actually centers on the prob­
ability current vector which in the present formalism 
has the form 

(4.8) 

where ( ). is the scalar part of the Clifford product 
(see I), and I/;t is the adjoint of I/; (i.e., the conjugate 
reversion of I/; multiplied by eO). 

A proper Lorentz transformation of the l' on 
the contravariant index p. may be written in the 
form 

(4.10) 

where 

1/;' == VI/;V- l
, (4.11) 

are the transformed minimal ideal elements cor­
responding to the Lorentz transformation inverse 
to that expressed in (4.9) on eJlo

• The element eJlo is 
left untransformed in (4.10). However, 1/;' is not an 
element of a left-minimal ideal in the old untrans­
formed basis system, but only one in the new primed 
minimal ideal basis since multiplication from right 
by V-I destroys the left-ideal property in general. 
Thus, in a matrix form one would re-express eJlo in 
terms of the space-time basis corresponding to the 
Lorentz transformation that acted on the 1/;. 

Alternatively, one may take (4.9) at face value. 
Since I/; is a left ideal so is (VI/;) , and I/;tv-1 is just 
the right-ideal adjoint of (VI/;). Hence we may con­
sider VI/; as the transformed minimal-ideal element 
and define 

rp' == VI/;, t, = .1.tV-l 
rp - 'I' , (4.12) 

and 
')10' _ ( t, )10 ') J -rperp •• (4.13) 

This form is more in keeping with the usual approach 
inasmuch as the matrix representation of the e)lo 
is left unchanged when the minimal-ideal basis is 
unchanged. However, in our present context it is 
not entirely consistent to designate rp' the Lorentz­
transformed spinor, such a designation should rather 
be reserved for the 1/;' of Eq. (4.11). Note the lack 
of change of the matrix representation of eJlo here 
differs from our discussion above of the lack of change 
when both e)lo and the minimal-ideal basis were 
transformed. 

We consider now time inversion, space inversion. 
and charge sign conjugation in the present formalism. 
Time inversion of space-time is just the change of 
eO to - eO and is accomplished by reflection in the 
time vector, i.e., 

(4.14) 

where VT = eO. Similarly, space inversion is given by 
an expression of the form (4.14) with Va = el23 

corresponding to reflection in all three space vectors. 
The coefficients of any Clifford aggregate remain 
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unchanged in such a transformation. This means, 
for example, if the coefficient were expressed in terms 
of a general point (XO, x\ x2

, x3
) in the old coordinate 

basis, it would be expressed formally in the same way 
in the new coordinate basis. However, if the new 
coefficient were to be expressed in terms of the old 
coordinate basis, say, to give the effect of time in­
version, they would be (-XO, x\ X2, x3

). Alterna­
tively, one might seek to nullify the effect of the 
transformation of space-time basis, then, e.g., under 
time inversion the set (-XO, x\ x2

, x3
) would again be 

used with the new basis. We note, however, if we do 
not change the coefficients but transform the space­
time basis under space or time inversion, the coordi­
nate arguments of the coefficients correspond to the 
inverted points since now the coordinates are meas­
ured along inverted axes. 

Perhaps of more direct interest in the present 
investigation is the nature of charge sign conjugation 
since charge sign conjugation is not a Lorentz trans­
formation but reveals the importance of other trans­
formations in the minimal-ideal basis. Consider then 
the Dirac equation in the vector Clifford formalism 

:E (ie" 0" - K)1/I = -:E qe" A,,1/I, (4.15) 
" I' 

where K = me/Ii, m is the mass of the particle, q is 
the (algebraic charge)/Jie, the AI' are real, and 1/1 
is an element of a minimal ideal. The effect of space 
and time inversion of the space-time basis in Eq. 
(4.15) is 

(4.16) 

where 1/IsT is the element of the minimal ideal ex­
pressed in terms of the inverted basis. Further, the 
operation of complex conjugation (i.e., the sign re­
versal i ~ - i in the complex scalar coefficients and 
in the basis elements) yields 

:E (ie" 0" - K)VisT = :E qel' A"VisT' (4.17) 
I' " 

where Vi ST is the complex conjugate of the 1/1 ST. 

Comparison with Eq. (4.15) shows that Eq. (4.17) 
is its charge sign conjugate so that Vi ST is the charge 
sign conjugate solution. Thus, in the Clifford formal­
ism, the combined operation of space-time inversion 
and complex conjugation is equivalent to charge sign 
conjugation. In going from Eq. (4.16) to Eq. (4.17), 
it should be noted that the vectors el' are unaffected 
by complex conjugation. A discussion of complex 
conjugation in this formalism has been given in a 

paper written later but already published10 and will 
also be further discussed in a forthcoming paper. 

It is worthwhile to see the effect of these trans­
formations in a specific case. Thus consider the 
equivalent of the standard representation Eqs. (3.8). 
For a proper homogeneous Lorentz transformation, 
we would just obtain the same equations in the 
primed frame. However, the effect of the improper 
inversions and complex conjugation is to change the 
basis to related ones. Thus, time inversion leads to 

l~c = HI + eO + ie12 + ie012), 

l:c = H _e
13 

_ e013 + ie23 + ie°23
), 

z;c = H _ie3 + ie03 + e123 
_ e0 123

), 

Z:c = H -ie1 + ieOl 
- e2 + e02

), 

(4.18) 

so that for this basis it changes the generating 
idempotent but leaves the exterior classes un­
changed. Space inversion leaves l~a unchanged but 
affects the relative phase (signs) of the exterior class 
factors so that 

Complex conjugation yields 

Zob _ 1(1 ° . 12 + . 012) 0-4 -e-~e w, 

Z:b = H _e13 _ e0 13 _ ie23 _ ie023), 

Z;b = H ie3 
- ie°3 + e123 

_ e0l23
), 

l;b = Hie1 
_ ie°1 

_ e2 + e02), 

(4.19) 

(4.20) 

so that it changes the idempotent as well as the 
relative signs of the exterior class factors. The effect 
of time inversion and complex conjugation together 
on the standard basis is 

l ad _ 1 (1 + ° . 12 • 012) 0-4 e-w -w, 

l:d = H _e13 
_ e0 13 _ ie23 _ ie°23) , 

l;d = Hie3 _ ie03 + el23 _ e0l23) , 

l;d = Hie1 
_ ieOI _ e2 _ e02) , 

(4.21) 

10 S. Teitler, J. Math. Phys. 6, 1976 (1965). It should be 
noted that the discussion of particle symmetry physics in the 
third paragraph of Sec. III of this reference is wrong. The 
regular decomposition symmetry for the Lorentz algebra 
does not properly provide for hypercharge. Thus, the SUa 
symmetry discussed there is not the usual extension of iso­
topic symmetry but provides instead a basis for higher­
symI?etry schemes once .the appropriate lower .symmetry is 
obtamed. Furthe~, the dls?ussl?n of the reductlOn ?f higher 
symmetry there 18 over SimplIfied and at best mIsleading. 
Recently, as this author reported in Bull. Am. Phys. Soc. 
Ser.II, 11,469(1966), a more complete marriage of the Lorentz 
a.nd isotopic algebras. was achieved, and a regl!lar dec?mposi­
tlOn that does prOVide for a proper extenslOn of Isotopic 
symmetry was obtained. 
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which also changes the idempotent and the relative 
signs of the exterior class factors. 

Finally, charge sign conjugation on Eqs. (3.18) 
yields a basis of the form 

Z~oo = HI + eO _ ie
12 

_ ie0
12

), 

z;oo = H -il + ie°3 
_ e

123 + e0
123

), 

Z;oo = H -M + ie°1 + i - e0
2
), 

(4.22) 

which is the same as Eqs. (4.21) except for the rela­
tive signs (phases) among the exterior class factors. 

More pertinent perhaps is the comparison with 
the original basis l;o. The relative phase among 
exterior class multipliers remains unchanged, but 
in the example considered the basis now corresponds 
to the l;d basis and therefore the spinor is described 
in an associated but different spinor space. Further, 
it should be kept in mind that charge sign conjuga­
tion as described by Eq. (4.17) involves not only a 
basis change but also complex conjugation of the 
coefficients. Also the definition of charge sign con­
jugation we have used is somewhat different from the 
usual definition which leaves the underlying spinor 
space unchanged. This could be accomplished in the 
present formulation by multiplying from the right by 

an appropriate element to restore the basis to the 
original basis. In the example above, this would be 
achieved with an element belonging to exterior class 
3. Of course, this has the effect of changing the labels 
(as well as, in general, the phases) of the coefficients 
in the sense that (l/to) BT no longer multiplies lo, etc. 
Inasmuch as this last step of re-expressing the basis 
arrived at after the combined operations of time 
inversion (T), space inversion (P), and complex 
conjugation (K) in terms of the original basis is 
representation-dependent, we prefer to use TPK 
as our definition of charge sign conjugation. 

Thus, we have seen how proper, homogeneous 
Lorentz transformations continuously change a mini­
mal-ideal basis into the same basis expressed in terms 
of the transformed space-time basis vectors. We 
have also seen how various combinations of space 
and time inversion of the space-time basis and com­
plex conjugation transform the minimal-ideal basis 
to another basis belonging to the same interior class 
and in general changing the signs (relative phase) 
among the minimal ideal basis elements. Further, 
we are able to define a representation-independent 
operation of charge sign conjugation as the product 
of time inversion, space inversion, and complex con­
jugation. 
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The enumeration and classification of the minimal ideals (spinor spaces) of the vector Clifford 
algebra generated from the vector basis of Lorentz space-time obtained previously is used in a dis­
cussion of equivalence mappings among these minimal ideals. Lorentz equivalence is defined as an 
equivalence mapping which possesses Lorentz symmetry. The concept of regular decomposition is 
introduced by which any element of the complete algegra is expressed in terms of a complete set of 
minimal ideals or spinor spaces. A regular current density which is invariant under unitary symmetry 
Ut among the spinor spaces of the regular decomposition is defined. The spin unitary symmetry, 
within a spinor space under which the spinor current density is invariant, is discussed. 

L INTRODUCTION 

I N previous works,l,2 we have utilized Marcel 
Riesz's3-6 idea of employing the vector Clifford 

algebra CIB, generated from the basis vectors of 
Lorentz space-time L 4 , in the description of one­
particle fields as linear combinations of Clifford 
basis elements termed Clifford aggregates. The alge­
bra ClG has as basis a scalar unit, I, four vector 
units of L 4, eX, six bivector units eXI' == eXel', (A < JJ.), 
four trivector units eXI'V(A < JJ. < II), and the pseudo­
scalar unit e0l23. Here A, JJ., II = 0, I, 2, 3; the as­
cending order of indices has been chosen for speci­
ficity and the algebra is defined by the commutation 
relations 

(JJ., II = 0, 1,2,3), (1.1) 

where [g'&V] is the Lorentz metric which we take to 
be gOO = - gIl = -l2 = -l3 = 1. As we emphasize 
below, this algebra CIB, which is generated from a 
Lorentz basis, has particular value in that it provides 
an adequate description of the most common fields 
and contains further inherent symmetry properties. 

In 1,1 we were able to show the unifying aspect 
of the vector Clifford algebra description of fields 
by characterizing the scalar, Proca, and spinor fields 
as particular Clifford aggregate solutions to the 
Dirac-like equation 

( K - i tel' a,,)1/I = 0, 
,,-0 

(1.2) 

1 S. Teitler, Nuovo Cimento Supp!. 3, 1 (1965), referred to 
as 1. 

IS. Teitler, Nuovo Cimento Supp!. 3, 15 (1965). 
3 M. Riesz in Comptes Rendus du Dixieme Congres des 

Mathematiques des Pays Scandanaves (Copenhagen 1946), 
pp. 123 fI. 

t M. Riesz in Comptes Rendus du Douzieme Congru des 
Mathematiques des Pays Scandanaves (Lund, 1953), pp. 241 fI. 

I M. Ries~ in Lecture Series No. 38 (University of Mary­
land, 1958), uhaps. I-IV. 

where K = me/h, and 1/1 is a Clifford aggregate. The 
scalar field solution corresponds to a combination of 
a scalar part and a 4-vector part consisting of the 
4-gradient of the scalar part. The Proca field solution 
is a particular combination of vector and bivector 
components. Finally, the usual Dirac-column 4-
spinor corresponds to an element of a minimal left 
ideal. 

More recently6 we have enumerated and classified 
the minimal ideals of ClG' This, in effect, is an 
enumeration of the spinor spaces possible for the 
description of 4-spinors. We have shown that the 
primitive idempotents E 4, which may be used to 
generate minimal ideals, are composed of elements 
belonging to the commuting 4-component subalge­
bras (designated interior classes) of ClB, i.e., 

where 

('I7;eAI)('I7jeA
;) = 1 

'l7keA• 

(1.3a) 

(1.3b) 

Here the appropriate '17; = ±1, ±i and the eAI are 
nonscalar basis elements of ClB. Then it follows that, 
given an interior class, there are twelve other basis 
elements of ClB which belong to three mutually 
exclusive exterior classes composed of four elements 
each. The elements of exterior class 1 commute with 
eA., but anticommute with eA. and eA.; the elements 
of exterior class 2 commute with eA., but anticom­
mute with eA. and eA. and similarly for exterior 
class 3. The interior classes and the related exterior 
classes are given in Table 1. 

A suitable left-(right-) minimal ideal basis is con­
stituted of one basis element proportional to an 

8 S. Teitler, J. Math. Phys. 7,1730 (1966), referred to as II. 

1739 
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idempotent derived from an interior class and three 
other elements respectively proportional to the left 
(right) multiplication of the primitive idempotent 
by an element from each of the exterior classes. For 
example, we may choose for a left-minimal ideal 
basis lo = E 4 , l; = SC/lo(j = 1, 2, 3), where SCI is 
proportional to e C I. Thus l~ = lo, loll = 0, l;lo = 
lj, ljlk = 0; j, k = 1, 2, 3. It follows in a straight­
forward way (see I or II) that an element of a 
minimal-left ideal may be represented by a column 
matrix or column 4-spinor in a spinor space whose 
basis may be identified with the left-minimal ideal 
basis. 

Note that the minimal ideal basis element which 
we have defined are both primitive (i.e., l~Cl" = al" 
or 0, where a is a scalar) and "orthogonal" (i.e., 
l"Cl" = 0 unless C contains an element in l,,). These 
requirements readily assure a column matrix rep­
resentation for a spinor but are not really necessary 
from the point of view of the minimal ideal descrip­
tion of spinor fields. Indeed, one may also use the 
prescription in I or II to obtain a column matrix 
representation using a basis containing the idem­
potent as proportional to one of the basis elements 
and three independent linear combinations of the 
other three primitive "orthogonal" basis elements in 
the new basis. More generally, we may consider four 
independent linear combinations of all the primitive 
"orthogonal" basis elements as the new minimal­
ideal basis. We speak of the equivalence (of the 
second kind) of primitive "orthogonal" bases and 
their independent linear combinations. This leads 
us to a discussion of spin unitary symmetry. 

However, prior to that, we consider the more 
usual (first kind) equivalence mappings of primitive 
"orthogonal" bases which correspond to different 
minimal ideals or spinor spaces. We see that such 
equivalence mappings may violate Lorentz sym­
metry, and in Sec. II we discuss the distinction be­
tween equivalence and its subclassification Lorentz 
equivalence. 

In Sec. III, we use the fact that the four minimal 
ideals generated from the idempotents of a given 
interior class are complete in the sense that any 
Clifford aggregate may be expressed as some linear 
combination of them. As is well known, this provides 
the basis for the usual discussion of the regular 
representation 7 and its irreducible components which 
correspond to the minimal ideals. In algebraic lan­
guage, we speak of the regular decomposition of the 
CIa (which is its only two-sided ideal) into a com-

7 H. Boerner, Representations of Groups (North-Holland 
Publishing Company, Amsterdam, 1963). 

plete set of equivalent minimal ideals. We use these 
concepts to discuss possible unitary symmetries 
among minimal ideals or spinor spaces. 

This contrasts with the spin unitary symmetry 
mentioned above and discussed in Sec. IV. For spin 
unitary symmetry we are concerned with symmetry 
within a spinor space. This is distinguished from the 
unitary symmetry discussed in Sec. III which is 
among the spinor spaces of the regular decomposi­
tion. 

n.LORENTZEQUIVALENCE 

Following Boerner 7 we define the equivalence 
mapping (of the first kind) from a minimal left 
ideal fJ 1 onto another one fJf as a one-to-one linear 
mapping which commutes with left multiplication, 
i.e., if ~I maps into ~r, then A~I maps into A~f or 

(2.1) 

Here ~I is an element of fJ 1 , ~f an element of fJf, and 
A any Clifford aggregate. As Boerner shows, all 
such equivalence mappings have the form of right 
multiplication by loCl~, where lo and l~ are the re­
spective idempotents of fJ 1 and fJf and C is a geneTal 
Clifford aggregate. Such an equivalence mapping 
does not distinguish among minimal ideal bases, and 
for simplicity one takes a primitive "orthogonal" 
basis which has the idempotent as one basis element 
and three others generated from the idempotent. 

Clearly, the minimal ideals generated with any 
of the interior classes are (first kind) equivalent to 
one another. However, we note the varied composi­
tion of these interior classes. Thus three, the stand­
ard type, contain a timelike vector, a bivector with 
space indices, and a trivector with mixed indices 
(i.e., a spacelike pseudo-vector). Six, the Majorana 
type, contain a spacelike vector, a bivector with 
mixed indices, and a mixed trivector; while three 
others, the pseudo-standard type, contain a space­
like vector, a bivector with space indices, and the 
trivector corresponding to a timelike pseudo-vector. 
Finally, there are three, the Weyl type which contain 
the pseudo-scalar and two complementary bivectors. 
Thus, for example, a minimal-left ideal generated by 
using one of the standard-type interior classes is 
(first kind) equivalent to one generated by using, sa:y, 
one of the interior classes of the Majorana type. 
However, such a mapping requires a timelike vector 
eO to be mapped into a spacelike vector iej(j = 1, 
2, or 3), etc., hence it has no Lorentz symmetry. Thus, 
we may distinghish between (first kind) equivalence 
mappings which have Lorentz symmetry (Lorentz 
equivalence) and those which do not. 
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TABLE I. The interior and corresponding exterior classes for generating primitive "orthogonal" bases for minimal ideals. 

Interior Class 
(1, 'IleA" 'IleA" '13e A,) 

(1, eO, ie", ieO") 

(1, eO, ie!3, ieOIl) 

(1, eO, ie21, ie023 ) 

(1, iel, ie'3, e"8) 

(1, iel, e02, ie012 ) 

(1, iel, e03, ieOl3) 

(1, iel , iel8, e128) 

(1, iel , eOI, ieOII ) 

(1, ie', e03, ie023) 

(1, iea, ie12, e128) 

(1, ie8, eOI, ieOl3) 

(1, ie3, eO', ie02S) 

(1, ieo123, ie23, eOI ) 

(1, ie0123, ie13, eO') 

(1, ie0123, ie l2, e03) 

Exterior Class 1 

(e13, e23, e013, e023) 

(e", e23, eOiJ, e023) 

(ell, e18, eO", e013) 

(e02, e08, e012, e013) 

(e03, el3, e018, e123) 

(e02, e23, eon., e123) 

(eOI, e03, e012, e023) 

(e03, e13, e028, e123) 

(eOI, e13, eOl2, el23 ) 

(eOI, eO', e013, eO' 3) 

(e02, e12, e023, e123) 

(eOI, ell, e013, e123) 

(eo., e03, e", e13) 

(eOI, e03, e12, e23 ) 

(eOI, e02, e13, e22) 

While each minimal-ideal basis provides a spinor 
space in which a spinor may be described in a 
Lorentz-covariant way, the mapping from spinor 
space to spinor space does not in general possess 
Lorentz symmetry. Once the mapping is completed, 
however, the new spinor space is again covariant. 
This tells us that any interior class may, in general, 
be used in a covariant theory, but that we must be 
careful in discussing the relationship of spinor fields 
in spinor spaces generated from different interior 
classes. 

Another interesting point is the possibility of 
symmetries compatible with Lorentz covariance 
among fields described in terms of spinors generated 
from Lorentz-equivalent interior classes. We briefly 
return to this point later, but first we tum to a 
discussion of unitary symmetries. 

ill. REGULAR DECOMPOSITION AND 
UNITARY SYMMETRY 

As is well known 7 from the discussion of the reg­
ular representation in group theory, for an algebra 
which is its own only two-sided ideal may be de­
composed into a linear combination of a complete 
set of equivalent minimal ideals. Such a complete 
set consists of the four (either right or left) minimal 
ideals generated from the four mutually annihilating 
idempotents of a given interior class. We call such a 
decomposition of an element of the complete algebra 
a regular decomposition. 

Exterior Class 2 Exterior Class 3 

(ea, eOs, el23, e0123 ) (el , e', eOl, e02 ) 

(e', e02, e123, e0123) (e1, ea, e01, e03) 

(el, eOI, e123, e0123 ) (e2, e', e02, eOI) 

(eO, eOI, e023, e0123) (e2, e3, e12, e23 ) 

(e3, e18, e023, e0123) (eO, e2, e01, e12) 

(e2, e12, e023, e0123) (eO, e3, e01, ell) 

(eO, e02, e013, e0123) (e1, e3, e12, e28) 

(e3, e23, e013, e0123) (eO, el, e02, e12) 

( e1, e12, eOl3, e0128 ) (eO, e3, e02, e28) 

(eO, e03, e012, e0123) (el , eI, e13, e23) 

(e2, e23, e012, e0123 ) (eO, e1, e03, e13) 

(el, e13, e012, e0123 ) (eO, e2, e03, e23 ) 

(eO, e1, e023, el23) (el , el, eOI', e013) 

(eO, e', e013, el28 ) (e1, e', e012, e023 ) 

(eO, e3, eoa, e123) (el, e2, e018, e023) 

Thus, a regular decomposition of an element of C16 

means expressing it in terms of elements of the 
minimal ideals of a given interior class or, in other 
words, expressing it as a linear combination of 4-
spinors in the four spinor spaces of a given interior 
class. 

A column 4-spinor or minimal-left ideal may be 
written in the form 

~I = .polo + .pIll + .pal2 + .p3l3. (3.2) 

From I we recall that, for any ~I satisfying the Dirac­
like equation, we may define a divergence-free cur­
rent density 

(3.3) 

where the subscript s means scalar part, and ~t is 
the adjoint of ~ (or the conjugate reversion of ~ 
multiplied on the left by eO). The possibility of 
unitary symmetry arises here in a relation among 
the spinor spaces. Thus, we may consider a regular 
current density J" 

J" = j: + j: + j~ + j: (3.4) 

arising from the four 4-spinors .p~(a = a, b, c, d). 
Now, let us make a physical assumption that for a 
class of spinors the regular current density JIl> is in­
variant under transformations among Spinol spaces, 
e.g., 

(3.5) 

(3.1) where u~ is the complex conjugate of u~. Note Eqs. 
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(3.5) represent combinations of entire spinor spaces, 
and not transformations among the spin components 
of a given spinor. These latter are the subject of the 
next section. 

Returning to the transformations [Eq. (3.5)], we see 
that if these transformations are unitary, we do 
indeed have 

"" .,. - "" .,.' L.J 3a - L.J 3a. 
a 

(3.6) 

The compatibility of this U 4 regular decomposition 
symmetry varies somewhat with minimal-ideal type. 
For the standard and pseudo-standard types, one 
can obtain all four minimal ideal bases from one of 
them by the operations of 1, TPK, TP, and K, 
where T is time inversion, P is 3-space inversion, 
and K is complex conjugation. For the Weyl and 
Majorana types the above combinations do not 
suffice to generate the complete set and improper 
operations such as P, PK, T, and TK are used in 
completing the set. Hence, the U4 regular decomposi­
tion symmetry may be said to be compatible with 
homogeneous Lorentz transformations for a stand­
ard or pseudo-standard-type minimal ideal basis 
but only a U2 regular decomposition symmetry is 
compatible for Weyl and Majorana types. Further, 
as emphasized in a recent publication,8 the U4 sym­
metry is also reduced when the spinor coefficients are 
constrained to obey the Dirac-like equation. Thus, 
for example, the projection of all the regular decom­
position minimal ideal spinors onto one basis encom­
passes the spinor and its (particle) charge conjugate, 
mass conjugate, and mass-charge conjugate counter­
parts so that the mass term is not left invariant. 

IV. SPIN UNITARY SYMMETRY 

We reduce our view now from the decomposition 
of the complete algebra and symmetry among the 
component spinor spaces of its regular decomposition 
to a particular spinor space. Thus, we consider an 
element of a given minimal-left ideal as a solution 
to the Dirac-like equation (1.2) which may be ex­
pressed in terms of a primitive "orthogonal" basis 

8 S. Teitler, J. Math. Phys. 6, 1976 (1965). However, the 
discussion of particle symmetry physics in the third paragraph 
of Sec. III of this reference is incorrect. The regular decomposi­
tion symmetry for the Lorentz algebra does not properly 
provide for hypercharge. Hence, the extension of the isotopic 
symmetry discussed there does not contain the usual lowest 
SUB symmetry of particle schemes but provides a basis for 
higher-symmetry schemes once the appropriate lower sym­
metry is obtained. Recently, as this author reported in Bull. 
Am. Phys. Soc. Ser. II 11, 469 (1966), a more complete com­
bination of the Lorentz and isotopic algebras was achieved 
and a regular decomposition symmetry that does provide 
for a proper extension of isotopic symmetry as well as higher 
symmetry was obtained. 

as in Eq. (3.2). The physical content of this spinor 
field is expressed in the divergence-free current 
density, Eq. (3.3). Now, we observe that the content 
of Eq. (3.2) and Eq. (3.3) remains unchanged if we 
consider the minimal ideal basis to be transformed 
by a unitary transformation 

p, = 0, 1,2,3 

or (4.1) 
A = Al, 

We say that the A basis is (second kind) equivalent 
to the 1 basis. However, in general, the (unnecessary) 
relationship between the vector Clifford minimal 
left-ideal basis and column matrices is no longer 
straightforward for the A basis. More important, the 
unitary combinations (4.1) are in general not Lorentz 
equivalent for the spinor field, for they may require, 
for example, combinations of scalar and vector, etc. 
However, for standard, pseudo-standard, and Major­
ana-type minimal ideals there is a nontrivial unitary 
combination which is compatible in a straightfor­
ward way with proper homogeneous Lorentz trans­
formations. This refers to combinations involving 
the scalar and pseudo-scalar elements. Thus, con­
sider for specificity a spinor in the standard basis 

4~1 = ~o(l - eO + ie12 
- il12) 

or 

+ ~l( _eta + eO
l3 + ie23 

_ ie°23
) 

+ ~i _ie3 
- ie03 + e l23 + e0

123
) 

+ ~3( -iel 
- ieo l 

- e
2 

_ e0
2

) 

~l = ~olg + ~Il~ + ~2Z: + ~31:. 
We note that 

l: = e0123l~, 

z: = e0123l~. 

(4.2) 

(4.3) 

One might suppose that such an SU2 symmetry 
(or a similar one) is involved in higher particle sym­
metry in the spirit of Giirsey and Radicati, and Pais' 
but this oversimplifies their view. Actually, as Giir­
sey has indicatedlO one should consider the particle 
"spin" unitary symmetry in the literature to be a 
regular decomposition unitary symmetry. For a 
standard-type minimal ideal with a basis used in 
Eq. (4.2), this turns out to be a unitary symmetry 
over two minimal ideal bases obtained from one 
another by complex conjugation. This may be readily 

9 F. Giirsey and L. A. Radicati, Phys. Rev. Letters 13, 173 
(1964); A. Pais, ibid. 13, 175 (1964). 

10 F. Giirsey, Phys. Letters 14, 330 (1965). I thank a 
referee for pointing out this reference. 
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seen since the operation of complex conjugation on 
these standard minimal ideal basis elements yields 
the same results as an ordinary (in contrast to 
spinor) 180 0 rotation about the 2 axis. Namely, 

(4.4) 

where 

Finally, we may note one other symmetry lll-

JOURNAL OF MATHEMATICAL PHYSICS 

herent in the present formulation and alluded to at 
the end of Sec. II. This is a possible symmetry among 
the interior classes of a given type. Thus, for a 
standard-type this corresponds to a rotational sym­
metry in ordinary space. Summarizing, we may con­
sider a heirarchy of symmetries. Within a spinor 
space we may have spin unitary symmetry of spin 
components or basis elements. Next there may be a 
unitary symmetry among the spinor spaces of the 
regular decomposition for a given interior class. 
Further, there may be a symmetry among the in­
terior classes of a particular type. 
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A singular Fredholm equation of the second kind is solved numerically by a Fourier series analysis 
in which the singularity is removed naturally, and by a Gaussian quadrature procedure in which the 
singularity was eliminated by an approximation using the law of the mean. In addition, an analytic 
solution of an associated Fredholm equation of the first kind was used for comparison with the numer­
ical results. Some properties of these numerical solutions are indicated, and a brief discussion of the 
errors is given. 

INTRODUCTION 

RECENTLY, one of the authors (RU.) solved a 
number of integral equations of the form 

tp(x) = f(x) - X Ll tp(t)K(x, t) dt (1) 

by numerical approximations in the course of treat­
ing a well-known problem in polymer chemistry.l.2 
Correct analytical solutions had not been found 
(a solution presented in Ref. 2 was later shown to 
be in errora). The point of special interest was that 
K(x, t) contained a singularity of the form Ix - W«, 
o < a < 1, and the technique we had used (an 
application of the law of the mean) has not, to our 
knowledge, been discussed in the mathematical 
literature. 4 

1 R. Ullman, J. Chern. Phys. 40, 2193 (1964). 
2 J. G. Kirkwood and J. Riseman, J. Chern. Phys. 16, 565 

(1948). 
3 J. G. Kirkwood and J. Risernan, J. Chern. Phys. 22, 1626 

(1954). 
4 Procedures using expansions in tenus of functions which 

are thelllSelves singular have been used by F. B. Hildebrand, 
Proc. Am. Acad. Arts Sci. 74, 287 (1941). 

It seemed interesting to us to look into the 
problem of numerical solutions of singular integral 
equations by comparing numerical results for a 
specific integral equation of this form. 

EQUATION AND METHODS OF SOLUTION 

The integral equation studied was 

tp(x) = x2 
- X fl tp(t) Ix - Wi dt. (2) 

The first method of solution was based on approx­
imation of the integral in (2) by a finite sum. This 
leads to a set of simultaneous linear equations which 
can be solved. In doing this, the removable sin­
gularity at t = x was evaluated by setting 

(3) 

The approximation procedure used was a "best" 
polynomial approximation using a Gaussian quad-
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rature formula. 6 Accordingly, (2) becomes 

.. 
L: CPa(Xj) + AiCPa(Xi)K(Xi, Xi)W(Xi) = X~, 
i-I 

j = l,n, (4a) 

K(Xi' Xi) = IXi - xil-f, i ~ j, (4b) 

K(Xi' Xi) = 2\12 [W(Xi)r f • (4 c) 

The coefficients W(Xi) and the coordinates Xi are 
both functions of n and were obtained from pub­
lished tables6 for n = 20, 40, and 80. The simulta­
neous equations were solved for 16 different values 
of A ranging from 0.5 to 200. The subscript G means 
that the solution is obtained by Gaussian quadra­
tures. Values of CPa(Xi) were computed for all values 
of Xi used in (4a) for each A. 

The second method was a Fourier series solution 
which was carried through in a standard manner. 
By this procedure, the singularity is automatically 
removed, and an approximation similar to that of 
(3) is unnecessary. The specific operations are as 
follows: 

cp(X) (5a) 

'" 
x2 = L: tpiTrpz, (5b) 

p"",-oo 

'" '" Ix - ti-i = L L: kv.ei".tei"V%. (5 c) 

One obtains a set of n simultaneous equations by 
keeping only those terms in (5) where p and q are 
less than or equal to n - 1 and greater than or 
equal to -n + 1. Since tv = i-v and kv. = k-v.-., 
'1'1' = CP-v. the numerical work is simplified. 

The equations for the Fourier coefficients CPv are 

n-1 

CP1> = t" - 2}..k",cpo - 2}.. L: (k". + kp._.)cp., .-1 
p = 0 to n - 1, 

p ~ 0, 

to = -1, 

(6) 

(7a) 

(7b) 

v;~;-~"::;1 [plS(2pf) - qfS(2qf)] , 

P ~ q, (7 c) 

6 See, for example, Z. Kopal, Numerical Analysis (John 
Wiley & Sons, Inc., New York, 1955), Chap. VII. 

e P. Davis and P. Rabinoqitz, J. Res. Natl. Bur. Std. 
(U. S.) 56, 35 (1956); ibid. 60, 613 (1958). 

k1>v + k"._p = (~)l C(2p)f - 4~11' S(2pl) ] ' 

p ~ 0, 

koo = 25
/

2/3. 

(7d) 

(7 e) 

The functions C(x) and Sex) are the Fresnel 
integrals defined by 

t t
2 

Sex) = 10 sin 11'2 dt, 

[" e 
C(x) = 10 cos 11'2 dt. 

(8a) 

(8b) 

The integrals Sex) and C(x) oscillate rapidly as 
X becomes large. We were able to obtain values 
accurate to six decimal places by linear interpolation 
using a tabulation spaced at values of x 0.001 units 
apart. 7 

The coefficients cP" were obtained by simultaneous 
solution of (6) for 16 different values of A, the same 
values used in the Gaussian quadrature procedure. 
Values of CPF (CPF is the function cP obtained from 
a Fourier series solution) were computed from the 
equation 

.. -1 

L: 
p--,,+1 

irJ'x 
cp"e (9) 

for n = 20, 40, 80, and each value of A and every 
value of X used in the n = 20, 40, and 80 Gaussian 
quadrature procedures. 

The function cp(x) may be obtained analytically 
for infinite A only, by setting the left-hand side 
of (2) equal to zero. This result based on a previous 
analysis8 is 

and is useful for comparison with the results ob­
tained from the approximations by the Fourier series 
and Gaussian quadrature methods. ACPA(X) was tab­
ulated for the 70 values of X between 0 and 1 used 
in the n = 20, 40, and 80 Gaussian quadrature 
calculations. 

The numerical work was performed by using a 
FORTRAN program and a Philco 212 computer. 

RESULTS 

The extensive array of numerical data obtained 
cannot be conveniently presented here, but we have 
chosen some typical results which illustrate the 

7 Tables of Fresnel Integrals (Academy of Sciences, USSR, 
Moscow, 1953). 

8 P. L. Auer and C. S. Gardner, J. Chern. Phys. 23, 1545 
(1955); ibid. 23, 1546 (1955). 
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advantages and disadvantages of the two methods. 
The notations ~F(20), ~F(40), ~F(80), ~G(20), ~G(40), 
~G(80), and ~a are used. The subscript F stands for 
a solution by the Fourier series procedure, the 
subscript G for a solution by Gaussian quadrature 
and the subscript a for an asymptotic solution at 
infinite A. The indices 20, 40, and 80 stand for 
solutions obtained by simultaneous solution of 20, 
40, and 80 equations, respectively. Data are pre­
sented for positive values of x only since ~(x) is 
an even function. 

In Fig. 1, plots of ~G(20), ~G(40), ~G(80), and 
~F(80) are presented for A = 200, 0 < x < 0.37. 
The lines are drawn to connect the points of ~G(80) 
and also <'oF(80). The oscillations of the Fourier series 
result are clearly demonstrated, and, in fact, the 
agreement between ~G(20), ~G(40), and ~G(80) is 
good, while the percentage deviation of ~F(80) is 
high. In Fig. 2, ~F(20), ~F(40), and ~F(80) are 
presented. The oscillatory character of the results 
is apparent and decreases in magnitude as n goes 
from 20 to 80. It is evident from (lO) that ~(x) 
diverges at x = 1 for infinite A. Accordingly, it is 
a critical test of the approximate calculation to 
examine <,O(x) for large A in the neighborhood of 
x = 1. In Fig. 3, graphs of ~G(20), <,00(40), <'oG(80), 
and ~F(80) at A = 200 are shown in the range 
0.96 < x < 1. It is instructive to note that ~G(80) 
increases sharply with x in the neighborhood of 

-.3 ,----~----.-----,---___. 

-.5 

-.6 

-.7 

-.8 L-__ ---' ___ -L ___ -'-__ ---' 

o .I .2 

X 

.3 .4 

FIG. 1. A plot of <p(x) VB x for 0 < x < 0.37 and X = 200. 
<PQ(20), .6.; <PQ(40), 0; '1'0(80), 0; <PF(80), •. The solid line 
connects the points of '1'0(80), the dashed line, I"F(80). 

-.3 ,-------r----..,...---~--~ 

-.4 
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-.7 

-.81--__ --1 ___ -L ___ --1-__ ---I 
o .2 

X 

.3 .4 

FIG. 2. A plot of I"(x) ve x for 0 < x < .37 and X = 200. I"F(20), 
.6.; <PF(40), .; I"F(80), •. 

unity while ~F(80) does not. The fact that ~0(80) 
is very nearly correct is evident from Table I. These 
differences between <,00(80) and the exact value of 
~ for A infinite are too small to be detectable on a 
graph with the scale used in Fig. 3. Table I presents 
data on ~G(80) for A = 100 and 200. It is clear from 

x 

~ 

1.4 

1.2 

1.0 

"9- .8 

.6 

.4 

1.0 

FIG. 3. A plot of <P(x) vs x for 0.96 <x < 1.00 and X = 200. 
<PQ(20), .6.; 9'0(40), 0; 1"0(80), 0; I"F(80), •. The solid line 
connects the points of 1"0(80), the dashed line, I"F(80). 
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TABLE I. A comparison of the approximate solution of (1) by Gaussian quadrature for A = 100 and 200 with the exact solutions 
of (1) for A infinite. 

x AI"G(80), A = 100 A<PG(80), A = 200 AI". 

0.019511 -0.15059 -0.15134 -0.14984 
0.136164 -0.14027 -0.14099 -0.13958 
0.250952 -0.11462 -0.11529 -0.11409 
0.362305 -0.07410 -0.07468 -0.07382 
0.468697 -0.01933 -0.01977 -0.01936 
0.568671 0.04898 0.04871 0.04857 
0.660860 0.13020 0.13165 0.12938 
0.744000 0.22413 0.22438 0.22288 
0.816954 0.33155 0.33217 0.32991 
0.878723 0.45554 0.45668 0.45362 
0.913263 0.55121 0.55284 0.54924 
0.954591 0.72872 0.73154 0.72714 
0.982849 1.00001 1.00574 1.00072 
0.989291 1.14206 1.14990 1.14483 
0.994228 1.34603 1.35812 1.35321 
0.997650 1.69033 1.71358 1.70897 
0.999553 2.52160 2.60904 2.60159 

TABLE II. A comparison of the Fourier series and Gaussian quadrature solutions of (1) for A = 0.5, and n = 20, 40, and 80. 

I"F 'PG 
X n = 20 n = 40 n = 80 n = 20 n = 40 n = 80 

0.019511 -0.081353 -0.080763 -0.081022 -0.081611 
0.116084 -0.074417 -0.073676 -0.073681 -0.074555 
0.227786 -0.052577 -0.052066 -0.052520 -0.053243 
0.413779 0.013979 0.014963 0.015277 0.014998 
0.502804 0.061399 0.062126 0.062386 0.062666 
0.636054 0.15347 0.15443 0.15394 0.15498 
0.778306 0.28619 0.28468 0.28370 0.28551 
0.912234 0.44826 0.45203 0.45436 0.45718 
0.999554 0.61713 0.63934 0.65425 0.67470 

TABLE III. A comparison of the Fourier series and Gaussian quadrature solutions of (1) for A = 5 and n = 20,40, and 80. 

I"F 
x n = 20 n = 40 n = 80 

<PG 
n = 20 n = 40 n = 80 

0.019511 -0.025170 -0.024621 -0.024921 -0.025238 
0.116084 -0.024067 -0.023441 -0.023418 -0.024002 
0.227786 -0.019659 -0.019142 -0.019692 -0.020066 
0.413779 -0.0075476 -0.0068064 -0.0064108 -0.0068272 
0.502804 0.0017947 0.0022485 0.0024800 0.0026375 
0.636054 0.021022 0.021985 0.021436 0.021620 
0.778306 0.052164 0.051056 0.049849 0.050836 
0.912234 0.091805 0.094123 0.096774 0.098252 
0.999554 0.17826 0.20045 0.22038 0.25978 

TABLE IV. A comparison of the Fourier series and Gaussian quadrature solutions of (1) for A = 20 and n = 20,40, and 80. 

I"F 
x n = 20 n = 40 n = 80 

I"G 
n = 20 n = 40 n = 80 

0.019511 -0.0072429 -0.0070077 -0.0071484 - 0.0072:413 
0.116084 -0.0069817 -0.0067257 -0.0067065 -0.0069158 
0.227786 -0.0057505 -0.0055208 -0.0057875 -0.0058668 
0.413779 -0.0026111 -0.0023277 -0.0021308 -0.0023099 
0.502804 -0.000090573 0.000061074 0.00014928 0.00024289 
0.636054 0.0051870 0.0056115 0.0053615 -0.0053895 
0.778306 0.014036 0.013624 0.013034 0.013422 
0.912234 0.024606 0.025353 0.026582 0.027030 
0.999554 0.054916 0.064667 0.074849 0.101630 
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TABLE V. A comparison of the Fourier series and Gaussian quadrature solutions of (1) for X = 200 and n = 20,40, and 80. 

<PF 
z n = 20 n = 40 n = 80 

1"0 
n = 20 n = 40 n = 80 

0.019511 - 0 . 00075804 - 0 . 00072890 -0.00074714 -0.00075671 
0.116084 -0.00073315 - 0 . 00070222 - 0 . 00069900 - 0 . 00072363 
0.227786 -0.00060475 -0.00057582 -0.00061105 -0.00061661 
0.413779 -0.00028978 - 0 . 00025680 - 0 . 00023038 - 0 . 00025321 
0.502804 -0.000031732 - 0.000015562 - 0 . 0000057949 0.0000079162 
0.636054 0.00051253 0.00056579 0.00053403 
0.778306 0.0014387 0.0013917 0.0013132 
0.912234 0.0024989 0.0025763 0.0027342 
0.999554 0.0059301 0.0071496 0.0085312 

Table I that the extrapolation of AtpG(80) to A in­
finite leads to results which are greater in magnitude 
than the correct results, the errors generally being 
of the order of 1 %. 

Tables II through V contain a sample of results 
in which 'PF(n) and 'PG(n) are compared for a range 
of values of x and A. Two principal trends are shown. 
First, the agreement between tpF and 'Po is best at low 
A, and Hystematically worsens as A increases. Second, 
the difference between 'PF and 'PG is worse, the 
closer x is to one. It should also be noticed that 
'PF(n) may sometimes be in closer accord with 'PG 

for small n rather than for large n. This is due to 
the fact that tpF oscillates about some mean curve 
as a function of x regardless of the value of n. This 
trend is also apparent in Figs. 1 and 2. 

DISCUSSION OF ERRORS 

The Fourier series solution introduces approx­
imations in two ways. First of all, the expansion of 
/x - Wi and x2 are terminated after n terms, and 
the quantities 'P" obtained from the truncated set 
of equations. Following this, 'PF is constructed for 
a particular value of x using (5a) which is also 
truncated, p taking on values in the range -n + 1 ::; 
P ::; n - 1. The result suffers from the fact that 
the quantities tp" are not quite correct, and that 
the expansion of 'P is limited. The advantage of the 
method is that IPF(X) can be easily computed for 
any value of x. 

The coefficients If) and k". of (7) do not drop off 
very rapidly with p and q. If an expansion of x 2 

and Ix - t/-! were made in terms of a more rapidly 
convergent orthogonal set of functions, the Fourier­
type solution would be better. The Legendre poly­
nomials would probably satisfy this condition, but 
unfortunately the Fourier-Legendre coefficients of 
Ix - Wi are not easily expressed in terms of known 
functions. 

One can write the integral equation in general 
notation 

0.00053548 
0.0013618 

0.0027810 
0.013045 

A·eIl = f (11 a) 

with its representation as a set of simultaneous 
equations as 

04·4- = f. (Ub) 

A differs from A because the integral in (2) is 
replaced by a sum, and because the diagonal terms 
of A, in particular, contains the approximation of (3). 
Whether the error committed is serious or not 
depends on how a small error in a particular element 
of the matrix propagates in the inversion process. 
The solution of the simultaneous equation is un­
stable if a small error perturbs the solution greatly. 
Some estimate of the instability can be obtained 
by examining the determinant of the coefficients. 
If (4a) is divided by A, it may be written as 

B·eIl = fjx, (12a) 

(12b) 

b·· is an element of the matrix B. The determinant 
oi' B for the Gaussian quadrature procedure using 
80 simultaneous equations is given for 16 values 
of A in Table VI. The large values of IBI for low A 

TABLE VI. The determination of IBI for the Gaussian quadra­
ture procedure for 16 values of A. 

A IBI 

0.5 2.69203 X 1030 

l. 2.57299 X 1011 
2. 2.51109 X 10-6 

3. 5.21611 X 10-13 

5. 8.07563 X 10-21 

7.5 1.34191 X 10-25 

10 2. 64995 X 10-28 

20 6.78439 X 10-33 

30 1 .31227 X 10-34 

40 1.65478 X 10-35 

50 4.61425 X 10-36 

60 l. 93940 X 10-36 

80 6. 44523 X 10-37 

100 3 . 29460 X 10-37 

150 1.33013 X 10-37 

200 8.40579 X 10-~ 
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are due to the first term on the right of (12b). 
However as the value of A increases, this term is 

I • 

negligible and yet the value of the determmant 
steadily decreases. This is the evidence (not proof) 
that the errors in tpo would be expected to be greater 
for large A. 

It is probable that the device for removal of the 
singularity (3) in the Gaussian procedure is the 
weakest step in the process, since K(Xi' x;) is in 
error by terms of the order of W(x;)t. Let us assume 
that the only errors in the analysis arise from this 
approximation. The solution of Eq. (12a) is treated 
as the exact result, but the approximate solution 
differs because of errors on the main diagonal B. 
One has 

8·. = f/A, 

where 8 is related to B by 

(13a) 

(13b) 

The solution of Eq. (12a) is obtained by matrix 
multiplication with the inverse matrix B-1

• Multiply­
ing Eqs. (12a) and (13a) by B- 1 leads to 

(14a) 

iPi = tpi - ~ ~ b~}EjiPi' (14b) 

which, upon substitution of tp; for iP;, yields 

iPi = tpi - ~ ~ b~}Ejtpj' (14c) 
• 

Note that the errors in (14c) increase as the terms 
b~} become large; generally, this is true for smallJBJ. 

An improved approximation over that of (3) would 
be obtained by representing tp(t) as a Taylor series 
about t = x keeping higher derivatives of tp(x) in 
the expansion. These derivatives could be expressed 
as difference formulas in terms of tp(x) at neighboring 
points. This was not done by us, and such a pro­
cedure would be interesting to examine. 

The Gaussian quadrature method yields results 
only at special values of x, and in order to obtain 
values of tp at an arbitrary value of x, appropriate 
interpolation methods must be applied. This is not 
difficult except perhaps in the neighborhood of a 
singularity of the function tp. 
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